Как называть амины. Общая формула аминов

У любого амина на атоме азота есть неподеленная пара электронов. При попадании амина в воду протоны от воды могут по донорно-акцепторному механизму образовывать новую ковалентную полярную связь с атомом азота, давая при этом ион алкил- или ариламмония. Вода, потерявшая протон, превращается в гидроксид-ион. Среда становится щелочной. Таким образом амины являются основаниями. Сила этих оснований зависит от природы и количества радикалов, связанных с азотом. Алифатические радикалы, такие как метил, этил и т.п.,проявляя свои элекронодонорные свойства, увеличивают основность аминов. Ароматические радикалы за счёт делокализации пары электронов по бензольному кольцу, наоборот, очень сильно основность уменьшают. В рамках теории резонанса Лайнуса Полинга это выглядит следующим образом:

Как видно, неподелённая пара электронов присутствует на атоме азота только в одной из резонансных структур (мезомерных форм). В трёх других биполярных структурах на атоме азота, наоборот, находится «+» - заряд, который естественно препятствует протонированию. Это и является причиной резкого снижения основности. Наличие в о- и п- положениях отрицательных зарядов позволяет высказать предположение о лёгкости протекания именно в эти положения реакций электрофильного замещения, где атакующей частицей является катион (например,

) Ниже будут приведены примеры реакций этого типа с ароматическими аминами.

Количественно сила оснований характеризуется величинами К b или их отрицательными логарифмами рК b . Индекс «b» означает, что речь идёт о константе равновесия между основанием – base, которым является амин и его сопряжённой кислотой, то есть аммониевым ионом:

По определению такая обратимая реакция описывается аналитическим выражением:

Так как концентрация воды в разбавленных водных растворах величина практически постоянная и равна 55,5 моль / л , то её вносят в «новую» константу равновесия:

Домножив числитель и знаменатель правой части уравнения на [Н + ] и учитывая, что [Н + ] [ОН - ] = К w = 10 -14 получим:



Логарифмируя это аналитическое выражение с использованием десятичных логарифмов,

придём к уравнению:

Меняя знаки на противоположные и вводя общепринятое обозначение: - lg = p, получим:

Так как логарифм единицы по любому основанию равен нулю, а 14 – рН = рОН, то очевидно, что рК b соответствует тому значению концентрации гидроксильных ионов, при котором половина катионов аммония перейдёт с отщеплением протона в свободный амин. Величина рК b для оснований имеет то же значение, что величина рК а для кислот. Ниже приведена таблица, данные которой показывают влияние природы радикалов и их количества на величины констант основности различных аминов.

Название основания Формула основания Тип основания К b при 25 о С Величина рК b при 25 о С
Аммиак 1,75 10 -5 4,75
Метиламин Первич. алифат. 4,60 10 - 4 3,34
Этиламин Первич. алифат. 6,50 10 - 4 3,19
Бутиламин Первич. алифат. 4,00 10 - 4 3,40
Изобутиамин Первич. алифат. 2,70 10 - 4 3,57
Втор -бутиламин Первич. алифат. 3,60 10 - 4 3,44
Трет -бутиламин Первич. алифат. 2,80 10 - 4 3,55
Бензиламин Первич. алифат. 2,10 10 -5 4,67
Диметиламин Вторич. алифат. 5,40 10 -4 3,27
Диэтиламин Вторич. алифат. 1,20 10 - 3 2,91
Триметиламин Третич. алифат. 6,50 10 -5 4,19
Триэтиламин Третич. алифат. 1,00 10 - 3 3,00
Анилин Первич. аромат. 4,30 10 - 10 9,37
п -толуидин Первич. аромат. 1,32 10 -9 8,88
п -нитроанилин Первич. аромат. 1,00 10 - 13 13,0
N,N-диметиланилин Третич. жирно- ароматический 1,40 10 -9 8,85
Дифениламин Вторич. аромат. 6,20 10 -14 13,21
Пиридин Гетероароматич. 1,50 10 - 9 8,82
Хинолин Гетероароматич. 8,70 10 -10 9,06
Пиперидин Вторич. алифат. и гетероциклический 1,33 10 -3 3,88
Гидразин 9,30 10 -7 6,03
Гидроксиламин 8,90 10 - 9 8,05
Этаноламин Произв. перв. алиф. 1,80 10 - 5 4,75

Данные таблицы позволяют сделать следующие выводы:

1) Алифатические амины гораздо более сильные основания, чем ароматические (примерно в 100000 – 1000000 раз)

2) Гетероароматические амины по своей основности близки к ароматическим.

3) На основность ароматических аминов оказывают сильное влияние заместители, находящиеся в пара - положении к аминогруппе. Электронодонорные заместители увеличивают основность амина, а электроноакцепторные её резко понижают. Отношение основностей ароматических аминов, содержащих метильную и нитрогруппы в указанном положении примерно 10000: 1.

4) Вторичные алифатические амины немного основнее первичных, а третичные имеют основность на том же уровне.

5) Характер радикала у первичных аминов не оказывает существенного влияния на основность амина.

6) Насыщенные гетероциклические амины имеют основность на уровне вторичных алифатических аминов.

7) Жирноароматические амины имеют основность на уровне ароматических аминов.

8) Вторичные ароматические амины имеют основность примерно в 10000 раз меньшую, чем первичные.

9) Электроотрицательные атомы, связанные в молекуле с атомом азота аминогруппы, понижают её основность в 10 (азот) и 1000 раз (кислород).

10) Атом кислорода, отделенный от аминогруппы двумя метиленовыми группами понижает её основность уже только в 67 раз.

Следует отметить также, что основность амидов кислот за счёт электроноакцепторного влияния карбонильной группы очень низкая – ниже даже, чем у вторичных ароматических аминов: у ацетамида рК b = 13,52; у ацетанилида рК b = 13,60 и у мочевины рК b = 13,82

ацетамид ацетанилид мочевина

Как основания первичные, вторичные и третичные амины реагируют с кислотами :

пропиламин бромид пропиламмония

диметиламин сульфат диметиламмония

триметиламин перхлорат триметиламмония

С многоосновными кислотами могут образовываться не только средние, но и кислые соли :

диметиламин гидросульфат диметиламмония

метилизобутиламин дигидроортофосфат метилизобутиламмония

Первичные ароматические , а так же вторичные и третичные жирноароматические амины с разбавленными водными растворами сильных кислот тоже дают соли :

Так же способны образовывать соли под действием концентрированных сильных кислот , но при разбавлении водой эти соли гидролизуются , давая слабое основание, то есть исходный амин :

Как очень слабые основания, не дают солей ни с концентрированной соляной, ни с серной кислотами. Правда, трифениламин всё же даёт с хлорной кислотой перхлорат:

.

Первичные алифатические амины реагируютв две стадии: на первой образуется крайне нестойкая в воде даже при охлаждении соль диазония , которая на второй стадии реагирует с водой с образованием спирта :

пропиламин хлорид пропилдиазония

пропанол-1

В реакции первичного амина с нитритом натрия и соляной кислотой происходит выделение газа (хорошо видны пузырьки) и рыбный запах амина изменяется на спиртовый – это качественная реакция на первичный алифатический амин.

Если просуммировать две приведённые выше реакции, то получим:

Вторичные амины реагируют совершенно иначе: под действием нитрита натрия и соляной кислоты образуется N-нитрозамин - весьма стойкое даже при нагревании соединение:

метилэтиламин N-нитрозометилэтиамин

В реакции вторичного алифатического амина с нитритом натрия и соляной кислотой происходит образование желтого масла, плохо растворимого в воде и с крайне неприятным запахом – это качественная реакция на вторичный алифатический амин.

Нитрозамины - канцерогены: вне зависимости от места и способа попадания в организм подопытного животного вызывают рак печени. Широко применяются в экспериментальной онкологии. Действуют резорптивно, то есть через кожу.

Третичные алифатические амины реагируют из смеси нитрита натрия и соляной кислоты только с кислотой :

Видимых эффектов в этой реакции нет. Запах ослабевает.

Первичные ароматические амины реагируют с образованием относительно стойкой при температурах от 0 до 5 о С соли диазония . Эта реакция впервые опубликована в 1858 году в немецком химическом журнале Петером Гриссом и носит его имя:

В реакцию Грисса вступают многочисленные гомологи анилина, содержащие алкильные заместители в о-,м - и п -положении к аминогруппе:

Так же в неё вступают производные анилина, содержащие электроноацепторные, электронодонорные заместители и заместители особой группы, например:

С бромоводородной кислотой реакция проходит быстрее, но используется редко и только в лаборатории по причине дороговизны и дефицитности этой кислоты.

На производстве соли диазония сразу же используют для проведения следующих стадий синтеза, но в лаборатории их часто выделяют по реакции обмена с насыщенным раствором тетрафторобората натрия:

Соли диазония чаще всего используют для получения многочисленных азокрасителей по реакции азосочетания с фенолами (нафтолами) и ароматическими третичными аминами, например:

Получившийся азокраситель является рН-индикатором: в кислой среде за счёт образования водородной связи он имеет плоскую структуру, в которой электронодонорное влияние гидроксильной группы ослаблено – эта форма окрашена в жёлтый цвет. В щелочной от гидроксильной группы отрывается протон, возникает «фенолят-ион», являющийся сильнейшим ЭД-заместителем, и окраска меняется на красно-оранжевую:

Роль соды в ходе реакции азосочетания – связывание образующейся соляной (или другой сильной) кислоты в кислую соль – гидрокарбонат натрия:

Смесь карбоната и гидрокарбоната натрия является буферным раствором, создающим слабо-щелочную среду.

С третичными ароматическими аминами азосочетание должно проходить в слабо кислой среде, что обеспечивается добавкой солей, гидролизующихся по аниону, например, ацетата натрия. В сильно кислой среде амин даёт соль аммония, катион которой с катионом диазония естественно не реагирует.

Ацетат натрия мгновенно реагирует с образующейся соляной кислотой. В результате образуется буферный раствор, состоящий из слабой уксусной кислоты и избыточного ацетата натрия. Он обеспечивает слабокислую среду:

Вторичные ароматические амины реагируют с нитритом натрия и соляной кислотой с образованием N-нитрозаминов. Например, N-метиланилин даёт N-нитрозо-N-метиланилин – жёлтое масло с крайне неприятным запахом, отвердевающее при 13 О С:

Ароматические N-нитрозоамины как и алифатические – канцерогены. Так же вызывают рак печени, так же применяются в экспериментальной онкологии.

Ароматические N-нитрозоамины под действием сухих хлоро- или бромоводородов или под действием концентрированной серной кислоты претерпевают перегруппировку впервые опубликованную в 1886 году в немецком химическом журнале О.Фишером и Е.Хеппом. В указанных условиях нитрозогруппа селективно переносится в п -положение:

Полученный в результате перегруппировки 4-нитрозо-N-метиланилин обладает совершенно иными физическими свойствами и биологической активностью. Это зелёное твёрдое вещество с температурой плавления 113 О С. В растворах в органических растворителях флюоресцирует. Канцерогеном не является, правда, вызывает дерматиты.

Третичные ароматические амины реагируют с нитритом натрия и соляной кислотой, давая С-нитрозосоединения . Нитрозогруппа селективно направляется в п -положение:

С-нитрозосоединения легко восстанавливаются водородом на никеле Ренея. При этом получаются несимметричные диалкилдиамины, например:

Соли алифатических и ароматических аминов могут быть легко переведены обратно в амины действием щелочей, например:

перхлорат пропиламмония пропиламин

гидросульфат метилпропиламмония метилпропиламин

Четвертичные аммониевые основания, наоборот, могут быть переведены вчетвертичные аммониевые соли действием кислот:

Гидроксид диметилэтилизопропиламмония хлорид диметилэтилизопропиламмония

Как видно это обычная реакция нейтрализации щёлочи кислотой – получаются соль и вода.

На стр.19 данного пособия было высказано предположение о лёгкости протекания в ароматических аминах реакций электрофильного замещения в орто - и пара -положения бензольного ядра. Действительно анилин легко бромируется сразу во все эти положения:

N,N-диалкиланилины сульфируются, нитруются, и диазотируются в орто - и пара -положения:

Ацетатом натрия сильная комплексная кислота переводится в слабую – уксусную:

Применение аминов

Простейший первичный амин – метиламин применяется в синтезах инсектицидов, фунгицидов, ускорителей вулканизации, поверхностно-активных веществ (ПАВ), лекарственных средств, красителей, ракетных топлив, растворителей. Например, N-метил-2-пирролидон – популярный растворитель для лаков и некоторых красителей получают взаимодействием метиламина с γ-бутиролактоном (циклическим сложным эфиром 4-оксибутановой кислоты):

γ-бутиролатон N-метил-2-пирролидон

Простейший вторичный амин – диметиламин применяется в синтезах инсектицидов, гербицидов, ускорителей вулканизации, поверхностно-активных веществ (ПАВ), многих лекарственных средств, красителей и таких важных растворителей как диметилфориамид (ДМФА), диметилацетамид (ДМАА) и гексаметилфосфотриамид (ГМФТА) или гексаметапол. ДМФА в промышленности получают, например, путём взаимодействия диметиламина с метиловым эфиром муравьиной кислоты:

метилформиат диметиламин ДМФА метанол

ДМАА в промышленности получают путём взаимодействия диметиламина с уксусным ангидридом:

уксусный ангидрид ДМАА

Промышленный синтез гексаметапола заключается во взаимодействии диметиламина с хлорокисью фосфора:

оксидтрихлорид фосфора ГМФТА

Простейший третичный амин – триметиламин применяется в синтезах четвертичных аммониевых оснований, флотоагентов, ретардантов, кормовых добавок. Например, последняя стадия синтеза карбахолина – лекарственного препарата, применяющегося при лечении глаукомы и послеоперационной атонии кишечника или мочевого пузыря, заключается во взаимодействии триметиламина с карбамоильным производным этиленхлоргидрина:

карбахолин

Катионные ПАВ получаются аналогично:

хлорид триметилалкиламмония

Этиламин применяется в производстве красителей, ПАВ, гербицидов. Например, симазин – гербицид для защиты от сорняков кукурузы и овощей получается взаимодействием этиламина с расчётным количеством хлорцианура в щелочной среде:

хлорцианур симазин

Диэтиламин применяется в производстве красителей, пестицидов, ускорителей вулканизации каучуков, ингибиторов коррозии, лекарственных препаратов, репеллентов. Например, широко известное средство от комаров – ДЭТА получают по реакции:

хлорангидрид м -толуиловой кислоты N,N-диэтил-м -толуамид

Изопропиламин, бутиламин, изобутиламин, втор -бутиамин и трет- бутиламины применяются в аналогичных производствах.

1,6-гександиамин широко применяетсядля синтеза нейлона путём реакции поликонденсации с 1,4-бутандикарбоновой (адипиновой) кислотой:

Среди лекарственных препаратов очень многие содержат аминогруппы различных видов. Так, например, из 1308 препаратов, приведённых в справочнике М.Д. Машковского, не менее 70 являются первичными аминами, не менее 52 вторичными и не менее 108 третичными. Кроме того среди лекарств имеется 41 четвертичная аммониевая соль и более 70 амидов карбоновых кислот, 26 амидов арилсульфокислот и 12 амидов производных ортофосфорной кислоты. Есть также циклические амиды – лактамы. Их 5 наименований. Производных природных аминокислот – 14 наименований. Ниже приведены примеры лекарственных препаратов, содержащих перечисленные функциональные группы:

Анестезин – этиловый эфир п -аминобензойной кислоты. Является первичным ароматическим амином и сложным эфиром одновременно.

Оказывает местноанестезирующее действие. Применяется для обезболивания раневых и язвенных поверхностей, при рвоте беременных, морской и воздушной болезнях.

Баклофен – 4-амино-3-(п -хлор)фенилбутановая кислота. Является первичным алифатическим амином, сложным эфиром и галогенпроизводным бензольного ряда одновременно.

Уменьшает мышечное напряжение, оказывает анальгезирующее действие. Применяется при рассеянном склерозе.

Салбутамол – 2-трет -бутиламино-1-(4"-окси-3"-оксиметил)фенилэтанол. Является вторичным алифатическим амином, вторичным и первичным спиртами и фенолом одновременно.

Оказывает бронхорасширяющее действие и препятствует преждевременным схваткам у беременных женщин. Применяется при бронхиальной астме и в акушерской практике.

Ортофен – натровая соль 2-(2",6"-дихлор)фениламинофенилуксусной кислоты. Является вторичным ароматическим амином, солью карбоновой кислоты и галогенпроизводым бензольного ряда одновременно.

Оказывает противовоспалительное, анальгезирующее и жаропонижающее действие. Применяется при остром ревматизме, ревматоидном артрите, болезни Бехтерева, артрозах, спондилоартрозах.

Изоверин – дигидрохлорид N-изоамил-1,5-пентандиамина. Является диаммонийной солью первичного и вторичного аминов одновременно.

Понижает артериальное давление, повышает тонус и усиливает сокращения мускулатуры матки. Применяется в качестве родоускоряющего средства и для стимулирования сокращения матки в послеродовом периоде.

Метиленовый синий – хлорид N,N,N’,N’-тетраметилтионина. Является одновременно и третичным жирно-ароматическим амином и аммонийной солью такого же амина. Кроме того содержит гетероароматический цикл с «пиридиновым» атомом азота.

Применяют наружно в качестве антисептического средства при ожогах, пиодермии и фолликулитах. При циститах и уретритах промывают полости 0,02% раствором синего цвета.

Пентамин – дибромид 3-метил-1,5-бис-(N,N-диметил-N-этил)аммоний-3-азапентана. Является одновременно и третичным алифатическим амином и дважды четвертичной аммониевой солью таких же аминов.

Обладает ганглиоблокирующей активностью. Применяют при гипертонических кризах, спазмах периферических сосудов, спазмах кишечника и желчевыводящих путей, почечной колике, для купирования острых приступов бронхиальной астмы, при отёках лёгких и мозга.

Никотинамид – амид 3-пиридинкарбоновой кислоты. Является амидом карбоновой кислоты и производным азотсодержащего гетероароматического цикла – пиридина.

Обладает противопеллагрическими свойствами, улучшает углеводный обмен, действует положительно при лёгких формах диабета, заболеваниях печени, сердца, при язвенной болезни желудка и двенадцатиперстной кишки. Применяют при гастритах с пониженной кислотностью, острых и хронических гепатитах, циррозах, при спазмах сосудов конечностей, почек и головного мозга.

Сульфадимезин – 2-(п- аминобензолсульфамидо)-4,6-диметилпиримидин. Представитель многочисленной группы сульфаниламидных препаратов. Является одновременно сульфаниламидом, первичным ароматическим амином и производным азотсодержащего гетероароматического цикла – пиримидина.

Как и все препараты этой группы сульфадимезин является активным противомикробным средством. Его применяют при пневмококковых, стрептококковых, менингококковых инфекциях, при сепсисе, гонорее, а также при инфекциях, вызванных кишечной палочкой и другими микробами.

Фопурин – 6-диэтиленамидофосфамидо-2-диметиламино-7-метилпурин. Является одновременно трижды фосфамидом, третичным ароматическим амином и производным азотсодержащего гетероароматического бицикла – пурина

Гемодез – 6% водно-солевой раствор низкомолекулярного поливинилпирролидона. Элементарное звено полимера содержит лактамное кольцо.

Связывает токсины, циркулирующие в крови, и быстро выводит их через почечный барьер. Применяют при дизентерии, диспепсии, сальмонеллёзе, при ожоговой болезни в фазе интоксикации.

Гистидин – L-β-имидазолилаланин или L-α-амино-β-(4-имидазолил)пропионовая кислота. Является α-аминокислотой и производным азотсодержащего гетероароматического цикла – имидазола

Гистидин – незаменимая аминокислота; содержится в разных органах, входит в состав карнозина – азотистого экстрактивного вещества мышц. В организме подвергается декарбоксилированию с образованием гистамина – одного из химических факторов (медиаторов), участвующих в регуляции жизненных функций.

Ангиотензинамид – ацетат L-аспарагинил-L-аргинил-L-валил-L-тирозинил-L-валил- L - гистидинил – L – пролил - L- фенилаланина. Представляет собой уксуснокислую соль октапептида, состоящего из природных α-аминокислот.

При шоковых состояниях применяется для быстрого и сильного сужения сосудов внутренних органов, кожных покровов, почек. Ангиотензинамид обладает также способностью сокращать гладкую мускулатуру матки, кишечника, мочевого и желчного пузыря. Он стимулирует выделение адреналина из надпочечников и продукцию альдостерона.

Амины. Определение
Классификация аминов по числу атомов водорода в аммиаке, замещённых на радикалы
Классификация аминов по характеру радикалов, связанных с атомом азота
Изомерия и номенклатура алифатических аминов
Способы получения аминов
Получение аминов из других азотсодержащих соединений
Из нитросоединений
Из нитрозосоединений
Из оксимов
Из гидразонов
Из амидов карбоновых кислот
Из нитрилов карбоновых кислот: 7
Получение аминов из соединений других классов
Из альдегидов и кетонов по реакции Лейкарта-Валлаха
Получение первичных алифатических аминов путем алкилирования аммиака
Получение вторичных алифатических аминов путем алкилирования первичных
Получение третичных алифатических аминов путем алкилирования вторичных
Получение четвертичных аммониевых солей из третичных аминов
Получение четвертичных аммониевых оснований из четвертичных аммониевых солей
Термолиз четвертичных аммониевых оснований
Алкилирование первичных ароматических аминов до симметричных
третичных аминов
Четырёхстадийный синтез вторичных жирно-ароматических аминов
Получение чистых первичных аминов по Габриэлю
Получение аминов из спиртов
Получение ароматических аминов
Восстановление ароматических нитросоединений по Н.Н. Зинину
Восстановление ароматических нитросоединений по Бешану
Каталитическое восстановление ароматических нитросоединений водородом
Физические свойства алифатических аминов
Агрегатное состояние алифатических аминов
Зависимость температур кипения алифатических аминов от строения
Растворимость алифатических аминов в воде и органических растворителях
Физические свойства ароматических аминов
Агрегатное состояние и растворимость ароматических аминов
Химические свойства аминов
Связь электронного строения аминов с основностью
Константы основности и величины рК b для алифатических, ароматических и гетероциклических аминов и некоторых родственных соединений
Реакции аминов с кислотами
Взаимодействие аминов с нитритом натрия и соляной кислотой
Перевод первичных алифатических аминов в спирты через диазосоединения
Перевод вторичных алифатических аминов в N-нитрозосоединения
Канцерогенность алифатических N- нитрозаминов
Взаимодействие третичных алифатических аминов с нитритом натрия
и соляной кислотой
Перевод первичных ароматических аминов в соли диазония
Выделение солей диазония из растворов в виде тетрафтороборатов
Реакция азосочетания с фенолами (нафтолами)
Азокрасители как рН-индикаторы
Реакция азосочетания с третичными ароматическими аминами
Перевод вторичных жирно-ароматических аминов в N-нитрозамины
Канцерогенность жирно- ароматических N- нитрозаминов
Перегруппировка Фишера- Хеппа
Перевод третичных ароматических аминов в С-нитрозосоединения
Каталитическое восстановление ароматических С- нитрозосоединений водородом
Взаимодействие солей алифатических и ароматических аминов со щелочам
Взаимодействие четвертичных аммониевых оснований с кислотами
Реакции электрофильного замещения в ароматических аминах
Применение аминов
Применение метил- и диметиламинов
Получение популярных органических растворителей: ДМФА, ДМАА и ГМФТА
Применение триметил- и этиламинов
Применение диэтиламина
Применение диаминов для получения полиамидных полимеров
Лекарственные препараты – амины и производные аминов
Анестезин
Баклофен
Салбутамол
Ортофен
Изоверин
Метиленовый синий
Пентамин
Никотинамид
Сульфадимезин
Фопурин
Гемодез
Гистидин
Ангиотензинамид
Содержание

Амины

Аминами называются органические производные аммиака, в котором один, два или все три атома водорода замещены на углеводородные радикалы (предельные, непредельные, ароматические).

Название аминов производят от названия углеводородного радикала с добавлением окончания -амин или от названия соответствующего углеводорода с приставкой амино-.

CH 3 - NH 2 CH 3 - NH - C 2 H 5

метиламин метилэтиламинмтилдифениламин

фениламин (анилин)

В зависимости от числа атомов водорода, замещенных в аммиаке на углеводородные радикалы, различают первичные, вторичные и третичные амины:

R- NH 2 R - NH - R"R - N - R”

первичный аминвторичный аминтретичный амин

Где R, R", R"" - углеводородные радикалы.

Первичные, вторичные и третичные амины можно получить, проводя алкилирование (введение алкильного радикала) аммиака. При этом происходит постепенное замещение атомов водорода аммиака на радикалы, и образуется смесь аминов:

NH 3 + CH 3 I - CH 3 NH 2 + HI

CH 3 NH 2 + CH 3 I - (CH 3) 2 NH + HI

(CH 3) 2 NH + CH 3 I - (CH 3) 2 N + HI

Обычно в смеси аминов преобладает один из них в зависимости от соотношения исходных веществ.

Для получения вторичных и третичных аминов можно использовать реакцию аминов с галогеналкилами:

(CH 3) 2 NH + C 2 H 5 Br - (CH 3) 2 NC 2 H 5 + HBr

Амины можно получить восстановлением нитросоединений. Обычно нитросоединения подвергают каталитическому гидрированию водородом:

C 2 H 5 NO 2 + 3H 2 - C 2 H 5 NH 2 + 2H 2 O

Этот метод используется в промышленности для получения ароматических аминов.

Предельные амины. При обычных условиях метил амин CH 3 NH 2 , диметиламин (CH 3) 2 NH, триметиламин (CH 3) 3 N и этиламин C 2 H 5 NH 2 - газы с запахом, напоминающим запах аммиака. Эти амины хорошо растворимы в воде. Более сложные амины - жидкости, высшие амины - твердые вещества.

Для аминов характерны реакции присоединения, в результате которых образуются алкиламиновые соли. Например, амины присоединяют галогеноводороды:

(CH 3) 2 NH 2 +HCl - [(CH 3) 2 NH 3 ]Cl

хлорид этиламмония

(CH 3) 2 NH + HBr - [(CH 3) 2 NH 2 ]Br

бромид диметиламмония

(CH 3) 3 N + HI - [(CH 3) 3 NH]I

иодид триметиламмония

Третичные амины присоединяют галогенопроизводные углеводорода с образованием тетраалкиламмониевых солей, например:

(C 2 H 5) 3 N + C 2 H 5 I - [(C 2 H 5) 4 N]I

Алкиламониевые соли растворимы в воде и в некоторых органических растворителях. При этом они диссоциируют на ионы:

[(C 2 H 5) 4 N]I = [(C 2 H 5) 4 N] + + I -

В результате водные и неводные растворы этих солей проводят электрический ток. Химическая связь в алкиламмониевых соединениях ковалентная, образованная по донорно-акцепторному механизму:

Ион метиламмония

Как и аммиак, в водных растворах амины проявляют свойства оснований. В их растворах появляются гидроксид-ионы за счет образования алкиламониевых оснований:

C 2 H 5 NH 2 + H 2 O = + + OH -

Щелочную реакцию растворов аминов можно обнаружить при помощи индикаторов.

Амины горят на воздухе с выделением CO 2 , азота и воды, например:

4(C 2 H 5) 2 NH + 27O 2 - 16CO 2 + 2N 2 + 22H 2 O

Первичные, вторичные и третичные амины можно различить, используя азотную кислоту HNO 2 . при взаимодействии этой кислоты с первичными аминами образуется спирт и выделяется азот:

CH 3 - NH 2 + HNO 2 - CH 3 - OH + N 2 +H 2 O

Вторичные амины дают азотистой кислотой нитрозосоединения, которые имеют характерный запах:

CH 3 - NH 2 - CH3 + HNO 2 - (CH 3) 2 - N=NO+H 2 O

Третичные амины не реагируют азотистой кислотой.

Анилин C 6 H 5 NH 2 является важнейшим ароматическим амином. Он представляет собой бесцветную маслянистую жидкость, которая кипит при температуре 184,4 0 С.

Анилин был впервые получен в XIX в. русским химиком-органиком Н. Н. Зининым, который использовал реакцию восстановления нитробензола сульфидом аммония (NH 4) 2 S. В промышленности анилин получают каталитическим гидрированием нитробензола с использованием медного катализатора:

C 6 H 5 - NO 2 + 3H 2 - cu -- C 6 H 5 - NH 2 + 2H 2 O

Старый способ восстановления нитробензола, который потерял промышленное значение, заключается в использовании в качестве восстановителя железа в присутствии кислоты.

По химическим свойствам анилин во многом аналогичен предельным аминам, однако по сравнению с ними является более слабым основанием, что обусловлено влиянием бензольного кольца. Свободная электронная пора атома азота, с наличием которой связаны основные свойства, частично втягивается в П - электронную систему бензольного кольца:

Уменьшение электронной плотности на атоме азота снижает основные свойства анилина. Анилин образует соли лишь с сильными кислотами. Например, с хлороводородной кислотой он образует хлорид фениламмония:

C 6 H 5 NH 2 + HCl - Cl

Азотная кислота образует с анилином диазосоединения:

C 6 H 5 - NH 2 + NaNO 2 +2HCl - Cl - + NaCl + 2H 2 O

Диазосоединения, особенно ароматические, имеют большое значение в синтезе органических красителей.

Некоторые особые свойства анилина обусловлены наличием в его молекуле ароматического ядра. Так, анилин легко взаимодействует в растворах с хлором и бромом, при этом происходит замещение атомов водорода в бензольном ядре, находящихся в орто- и пара-положенияхк аминогруппе:


Анилин сульфируется при нагревании с серной кислотой, при этом образуется сульфаниловая кислота:

Сульфаниловая кислота - важнейший промежуточный продукт при синтезе красителей и лекарственных препаратов.

Гидрированием анилина в присутствии катализаторов можно получить циклогексиламин:

C 6 H 5 - NH 2 + 3H 2 -C 6 H 11 - NH 2

Анилин используется в химической промышленности для синтеза многих органических соединений, в том числе красителей и лекарств.

Метиламин

Общие традиционные названия

Монометиламинаминометан MMA

Химическая формула CH 5 N

Молярная масса 31,1 г/моль

Физические свойства

Состояние (ст. усл.) бесцветный газ

0,23 Па·с (при 20°C)

Термические свойства

Температура плавления - 94°C

Температура кипения - 6°C

Температура вспышки 8°C

Химические свойства

Растворимость в воде 108 г/100 мл

Некоторые наиболее известные амины

Метиламин

Метиламин (CH 3 --NH 2)-- бесцветный газ с запахом аммиака, t кип? 6,32°C. Применяется для синтеза пестицидов, лекарств, красителей. Наиболее важными из продуктов являются N-Метил-2-пирролидон (NMP), метилформамид, кофеин, эфедрин и N,N"-диметилмочевина. Также является второстепенным азотистым экскретом у костных рыб.

Метиламин является типичным первичным амином. С кислотами метиламин образует соли. Реакции с альдегидами и ацеталями ведут к основаниям Шиффа. При взаимодействии со сложными эфирами или ацил хлоридами дает амиды.

Как правило, используется в виде растворов: 40% масс в воде, в метаноле, этаноле или ТГФ.

Получение

Промышленное производство метиламина основывается на взаимодействии метанола с аммиаком при высокой температуре (от 370 до 430 °C) и давлении от 20 до 30 бар. Реакция проходит в газовой фазе на гетерогенном катализаторе на основе цеолита. В качестве побочных продуктов реакции образуются также вода, диметиламин (CH 3) 2 NH и триметиламин (CH 3) 3 N:

CH 3 OH + NH 3 > CH 3 NH 2 + H 2 O

CH 3 NH 2 + CH 3 OH > (CH 3) 2 NH + H 2 O

(CH 3) 2 NH + CH 3 OH > (CH 3) 3 N + H 2 O

Чистый метиламин получают путем многократной перегонки.

Альтернативное получение метиламина основано на взаимодействии формалина с хлористым аммонием при нагревании.

Горение метиламина проходит по уравнению:

4 СH 3 NH 2 + 9 O 2 = 4 CO 2 + 10 H 2 O + 2 N 2

Диметиламин

Диметиламимн -- вторичный амин, производное аммиака, в молекуле которого два атома водорода замещены метильными радикалами. Бесцветный газ с резким неприятным запахом, легко сжижающийся при охлаждении в бесцветную жидкость. Горюч.

CH 3 --NH --CH 3

Применение

Применяется для получения веществ, используемых в производстве резины. Служит сырьём для производства гептила -- ракетного топлива. Использовался в производстве химического оружия (табуна).

Триэтиламин

Систематическое наименование

триэтиламин

Химическая формула

Эмпирическая формула

Молярная масса

101,19 г/моль

Физические свойства

Состояние (ст. усл.)

жидкость

Плотность

Термические свойства

Температура плавления

Температура кипения

Температура вспышки

Энтальпия образования (ст. усл.)

99.58 кДж/моль

Удельная теплота испарения

Давление пара

70 гПа (20 °C)

Химические свойства

Растворимость в воде

13.3 г/100 мл

Оптические свойства

Показатель преломления

Структура

Дипольный момент

0,66 (20 °C) Д

Токсикология

Токсичность

Триэтиламин

Триэтиламин -- третичный амин. Химическая формула (С 2 H 5) 3 N, часто используется обозначение Et 3 N. Нашёл широкое применение, как простейший симметричный третичный амин, находящийся в жидком состоянии.

Получение

В промышленности получают совместно с этиламином, диэтиламином при парофазном аминировании этанола аммиаком над Al 2 O 3 или SiO 2 или их смесью при 350-450°C и давлении 20-200 атм либо над Ni, Co, Cu, Re и H 2 при 150-230°C и давлении 17-35 атм. Состав получаемой смеси зависит от исходных соотношений.

CH 3 CH 2 OH + NH 3 = CH 3 CH 2 NH 2 + H 2 O

CH 3 CH 2 OH + CH 3 CH 2 NH 2 = (CH 3 CH 2) 2 NH + H 2 O

CH 3 CH 2 OH + (CH 3 CH 2) 2 NH = (CH 3 CH 2) 3 N + H 2 O

Полученная смесь разделяется ректификацией

Физические свойства

При комнатной температуре представляет собой подвижную бесцветную жидкость, имеющая сильный рыбный запах, напоминающий аммиачный. Температура плавления?114,8°C, температура кипения 89,5°C. Ограниченно растворим в воде (нижняя критическая точка при T=19,1°C и 31,6% вес. триэтиламина), хорошо растворим в ацетоне, бензоле, хлороформе, смешивается с этанолом, диэтиловым эфиром. С водой образует азеотроп с т. кип. 75°C и содержащий 90% весовых триэтиламина.

Химические свойства

Как сильное органическое основание (pKa=10.87) образует кристаллические триэтиламмонийные соли с органическими и минеральными кислотами.

HCl + Et 3 N > Et 3 NH + Cl ?

В качестве основания триэтиламин широко используется в органическом синтезе, в частности при синтезе сложных эфиров и амидов из ацилхлоридов для связывания образующегося хлороводорода.

R 2 NH + R"C(O)Cl + Et 3 N > R"C(O)NR 2 + Et 3 NH + Cl ?

Также используется в реакции дегидрогалогенирования

Триэтиламин легко алкилируется, образуя четвертичные аммониевые соли

RI + Et 3 N > Et 3 NR + I ?

поэтому для создания основной среды в присутствии алкилаторов используют диизопропилэтиламин.

Применение

Катализирует образование пенополиуретанов и эпоксидных смол. Находит некоторое применение в качестве ракетного топлива. Используется в производстве гербицидов, лекарств, красок.

Для удаления первичных и вторичных аминов перегоняют над уксусным ангидридом. Сушат над КОН и перегоняют.

Безопасность

Концентрационный предел воспламенения = 1,2--8% по объёму.

Раздражает дыхательные пути, глаза и кожу, при прямом контакте может вызвать сильный ожог. ПДК=10 мг/м 3

амин производный аммиак углеводородный

Этилендиамин

Свойства

Жидкость без цвета с запахом аммиака. t kип 116,5°C, t пл 8,5°C, плотность 0,899 г/смі (20°C); Этилендиамин растворим в воде, спирте, хуже -- в эфире, нерастворим в бензоле. Является сильным основанием.

Применение

Этилендиамин применяется для получения этилендиаминтетрауксусной кислоты взаимодействием с хлоруксусной кислотой. Его соли с жирными кислотами используются как смягчающие агенты при производстве текстиля. Также этилендиамин применяется в производстве красителей, эмульгаторов, стабилизаторов латексов, пластификаторов и фунгицидов.

Получение

Токсичность

Традиционные названия

ФениламинАминобензол

Химическая формула

Эмпирическая формула

Молярная масса

93,13 г/моль

Физические свойства

Плотность

1,0217 г/смі

Динамическая вязкость (ст. усл.)

3,71 Па·с(при 20 °C)

Термические свойства

Температура плавления

Температура кипения

Химические свойства

Растворимость в воде

Анилимн (фениламин) -- органическое соединение с формулой C 6 H 5 NH 2 , простейший ароматический амин. Представляет собой бесцветную маслянистую жидкость с характерным запахом, немного тяжелее воды и плохо в ней растворим, хорошо растворяется в органических растворителях. На воздухе быстро окисляется и приобретает красно-бурую окраску. Ядовит! Название «анилин» происходит от названия одного из растений, содержащих индиго -- Indigofera anil (современное международное название растения -- Indigofera suffruticosa).

Впервые анилин был получен в 1826 году при перегонке индиго с известью немецким химиком Отто Унфердорбеном (нем. Otto Unverdorben), который дал ему название «кристаллин».

В 1834 Ф. Pyнгe обнаружил анилин в каменно-угольной смоле и назвал «кианолом».

В 1841 Ю.Ф. Фришце получил анилин нагреванием индиго с раствором KOH и назвал его «анилином».

В 1842 анилин был получен Н.Н. Зининым восстановлением нитробензола действием (NH 4) 2 S 3 и назван им «бензидамом».

В 1843 А.В. Гофман установил идентичность всех перечисленных соединений.

Промышленное производство фиолетового красителя мовеина на основе анилина началось в 1856 году.

Химические свойства

Для анилина характерны реакции как по аминогруппе, так и по ароматическому кольцу. Особенности этих реакций обусловлены взаимным влиянием атомов. С одной стороны, бензольное кольцо ослабляет основные свойства аминогруппы по сравнению с алифатическими аминами и даже с аммиаком. С другой стороны, под влиянием аминогруппы бензольное кольцо становится более активным в реакциях замещения, чем бензол. Например, анилин энергично реагирует с бромной водой с образованием 2,4,6-триброманилина (белый осадок).

Получение

Восстановление железом:

4C 6 H 5 NO 2 + 9Fe + 4H 2 O >4C 6 H 5 NH 2 + 3Fe 3 O 4

Восстановление водородом в присутствии катализатора и при высокой температуре:

C 6 H 5 NO 2 + 3H 2 > C 6 H 5 NH 2 + 2H 2 O

Восстановление нитросоединений -- Реакция Зинина:

C 6 H 5 NO 2 + 3(NH 4) 2 S > C 6 H 5 NH 2 + 6NH 3 + 3S + 2H 2 O

Производство и применение

Изначально анилин получали восстановлением нитробензола молекулярным водородом; практический выход анилина не превышал 15%. При взаимодействии концентрированной соляной кислоты с железом выделялся атомарный водород, более химически активный по сравнению с молекулярным. Реакция Зинина является более эффективным методом получения анилина. В реакционную массу вливали нитробензол, который восстанавливается до анилина.

По состоянию на 2002 год, в мире основная часть производимого анилина используется для производства метилдиизоцианатов, используемых затем для производства полиуретанов. Анилин также используется при производстве искусственных каучуков, гербицидов и красителей (фиолетового красителя мовеина).

В России он в основном применяется в качестве полупродукта в производстве красителей, взрывчатых веществ и лекарственных средств (сульфаниламидные препараты), но в связи с ожидаемым ростом производства полиуретанов возможно значительное изменение картины в среднесрочной перспективе.

Токсичные свойства

Анилин оказывает негативное воздействие на центральную нервную систему. Вызывает кислородное голодание организма за счёт образования в крови метгемоглобина, гемолиза и дегенеративных изменений эритроцитов.

В организм анилин проникает при дыхании, в виде паров, а также через кожу и слизистые оболочки. Всасывание через кожу усиливается при нагреве воздуха или приёме алкоголя.

При лёгком отравлении анилином наблюдаются слабость, головокружение, головная боль, синюшность губ, ушных раковин и ногтей. При отравлениях средней тяжести также наблюдаются тошнота, рвота, иногда, шатающаяся походка, учащение пульса. Тяжёлые случаи отравления крайне редки. При хроническом отравлении анилином (анилизм) возникают токсический гепатит, а также нервно-психические нарушения, расстройство сна, снижение памяти и т. д.

При отравлении анилином необходимо, прежде всего, удаление пострадавшего из очага отравления, обмывание тёплой (но не горячей!) водой. Так же вдыхание кислорода с карбогеном. Также применяют кровопускание, введение антидотов (метиленовая синь), сердечнососудистые средства. Пострадавшему надо обеспечить покой.

Предельно допустимая концентрация анилина в воздухе рабочей зоны 3 мг/м3. В водоёмах (при их промышленном загрязнении) 0,1 мг/л (100 мг/м3).

Этилендиамин

Этилендиамин (1,2-диаминоэтан) H 2 NCH 2 CH 2 NH 2 -- органическое соединение класса аминов.

Свойства

Жидкость без цвета с запахом аммиака. t kип 116,5°C, t пл 8,5°C, плотность 0,899 г/смі (20 °C); Этилендиамин растворим в воде, спирте, хуже -- в эфире, нерастворим в бензоле. Является сильным основанием.

Применение: Этилендиамин применяется для получения этилендиаминтетрауксусной кислоты взаимодействием с хлоруксусной кислотой. Его соли с жирными кислотами используются как смягчающие агенты при производстве текстиля. Также этилендиамин применяется в производстве красителей, эмульгаторов, стабилизаторов латексов, пластификаторов и фунгицидов.

Получение

Основным способом синтеза этилендиамина в промышленности является взаимодействие аммиака с дихлорэтаном.

Токсичность

Этилендиамин токсичен; предельно допустимая концентрация его паров в воздухе составляет 0,001 мг/л.

Пиридин -- шестичленный ароматический гетероцикл с одним атомом азота, бесцветная жидкость с резким неприятным запахом; смешивается с водой и органическими растворителями. Пиридин -- слабое основание, дает соли с сильными минеральными кислотами, легко образует двойные соли и комплексные соединения.

История открытия

Пиридин был открыт в 1846 г. Андерсоном при исследовании костяного масла, получающегося сухой перегонкой необезжиренных костей. В 1869 г. Кернер в частном письме к Каниццаро высказал мысль, что П. может быть рассматриваем, как бензол, в котором одна группа СН замещена азотом. По мнению Кернера, подобная формула не только объясняет синтезы пиридина, но, главным образом, указывает, почему простейший член ряда пиридиновых оснований имеет пять атомов углерода. Через год Дьюар (Dewar), независимо от Кернера, пришел к той же формуле, которая затем нашла себе подтверждение и в позднейших работах других химиков. Позже изучением структуры пиридина занимались Томсен, Бамбергер и Пехманн, Чамичан и Деннштедт. В 1879 г. А. Вышнеградский высказал мнение, что, может быть, все растительные основания суть производные пиридина или хинолина, а в 1880 г. Кенигс предлагал даже именем алкалоидов называть только те растительные основания, которые могут быть рассматриваемы, как дериваты пиридина. Однако на настоящее время границы понятия «алкалоиды» значительно расширились.

Получение

Основным источником для получения пиридина является каменноугольная смола.

Химические свойства

Пиридин проявляет свойства, характерные для третичных аминов: образует N-оксиды, соли N-алкилпиридиния, способен выступать в качестве сигма-донорного лиганда.

В то же время пиридин обладает явными ароматическими свойствами. Однако наличие в кольце сопряжения атома азота приводит к серьёзному перераспределению электронной плотности, что приводит к сильному снижению активности пиридина в реакциях электрофильного ароматического замещения. В таких реакциях реагируют преимущественно мета-положения кольца.

Для пиридина характерны реакции ароматического нуклеофильного замещения, протекающие преимущественно по орто-пара положениям кольца. Такая реакционная способность свидетельствует о электроннодефицитной природе пиридинового кольца, что может быть обобщено в следующем эмпирическом правиле: реакционная способность пиридина как ароматического соединения примерно соответствует реакционной способности нитробензола.

Применение

Применяют в синтезе красителей, лекарственных веществ, инсектицидов, в аналитической химии, как растворитель многих органических и некоторых неорганических веществ, для денатурирования спирта.

Безопасность

Пиридин токсичен, действует на нервную систему, кожу.

Пиперидин

Пиперидин

Традиционные названия

пентаметиленимин

Химическая формула

Молярная масса

85.15 г/моль

Физические свойства

Состояние (ст. усл.)

жидкость

Плотность

Динамическая вязкость (ст. усл.)

1.573 Па·с(при 20 °C)

Термические свойства

Температура плавления

Температура кипения

Химические свойства

Растворимость в воде

смешивается г/100 мл

Оптические свойства

Показатель преломления

Пиперидин (пентаметиленимин) -- гексагидропиридин, шестичленный насыщенный цикл с одним атомом азота. Бесцветная жидкость с аммиачным запахом, смешивается с водой, а также с большинством органических растворителей, образует азеотропную смесь с водой (35% воды по массе, T кип 92.8°C) Входит в виде структурного фрагмента в фармацевтические препараты и алкалоиды. Получил своё название от латинского названия черного перца Piper nigrum, из которого впервые был выделен.

Впервые пиперидин быль выделен Эрстедом из черного перца в 1819 году. В 1894 году осуществлён его полный синтез Альбертом Ладенбургом и Шолцом

Методы получения

В промышленности в основном гидрированием пиридина над дисульфидом молибдена или никелем при 200 °C в качестве катализатора

Электрохимическим восстановлением

Из пиридина восстановлением натрием в абсолютном этаноле.

Нагреванием пентаметилендиамина дигидрохлорида.

NH 2 CH 2 CH 2 CH 2 CH 2 CH 2 NH 2 *2HCl > C 5 H 10 NH*HCl

Реакционная способность

По своим химическим свойствам пиперидин является типичным вторичным алифатическим амином. Образует соли с минеральными кислотами, легко алкилируется и ацилируется по атому азота, образует комплексные соединения с переходными металлами (Cu, Ni и т.п.). Нитрозируется азотистой кислотой с образованием N-нитрозопиперидина, при действии гипохлоритов в щелочной среде образует соответствующий N-хлорамин C 5 H 10 NCl,

При кипячении пиперидина с концентрированной йодоводородной кислотой происходит восстановительное раскрытие цикла с образованием пентана:

(CH 2) 5 NH + HJ > CH 3 CH 2 CH 2 CH 2 CH 3

При расщеплении исчерпывающем метилировании и расщеплении по Гофману образует пента-1,3-диен.

При нагревании в серной кислоте в присутствии солей меди или серебра пиперидин дегидрируется в пиридин.

Нахождение в природе и биологическая роль

Сам пиперидин выделялся из перца. Пиперидиновый цикл является структурным фрагментом ряда алкалоидов. Так пиперидиновый цикл входит в состав алкалоида кониина, содержащегося в болиголове пятнистом, в состав пиперина, который придаёт жгучий вкус черному перцу. Также в Solenopsin токсине Огненных муравьёв.

Применение

Пиперидин широко используется в органическом синтезе используется в качестве основного катализатора при альдольной конденсации, реакции Кнёвенагеля, как аминный компонент в реакции Манниха и реакции Михаэля.

Пиперидин как высококипящий вторичный амин используется для превращения кетонов в енамины, которые могут быть проалкилированы или проацилированы в б-положение (реакция Сторка).

Безопасность

Токсичен как при попадании на кожу, так и при вдыхании паров. Лекговоспламеним, температура вспышки 16 °C. Работы с ним проводятся в вытяжном шкафу.

Хинолин -- органическое соединение гетероциклического ряда. Применяют как растворитель для серы, фосфора и др., для синтеза органических красителей. Производные хинолина, используют в медицине (плазмоцид, хинин).

Промышленное получение

Хинолин встречается в составе каменноугольной смолы, из которой и добывается.

Методы синтеза

Производные хинолина с заместителями в положениях 2 и 4 можно получить путем конденсации анилина (1) и в-дикетонов (2) в кислой среде. Этот метод получил название «синтез хинолинов по Комба»

Из анилина и б,в-ненасыщеных альдегидов (метод Дёбнера-Миллера). Механизм данной реакции очень близок к механизму реакции Скраупа

Из 2-аминобензальдегида и карбонильных соединений, содержащих б-метиленовую группу (синтез Фридлендера). Метод практически не употребляется из-за низкой доступности о-карбонильных производных анилина

Конденсацией анилина и глицерина в присутствии серной кислоты (метод Скраупа)

Механизм этой реакции точно не установлен, но предполагают, что процесс идет как 1,4-присоединение анилина к акролеину. Акролеин образуется в результате дегидратации глицерина в присутствии серной кислоты (образование акролена подтверждено: из готового акролеина и анилина также образуется хинолин.


Реакция сильно экзотермична, поэтому процесс обычно проводят в присутствии сульфата железа (II). В качестве окислителя используют также оксид мышьяка (V), в этом случае процесс протекает не так бурно,как с нитробензолом и выход хинолина выше.

По реакции Поварова из бензальдегида, анилина и алкена.

Из орто-ацилацетофенона и гидроксида (en:Camps quinoline synthesis).

Из в-кетоанилида (en:Knorr quinoline synthesis).

Из анилина и в-кетоэфиров (en:Conrad-Limpach synthesis).

en:Gould-Jacobs reaction

Токсикология и безопасность

LD 50 для млекопитающих составляет несколько сотен мг/кг.

Морфолин

Морфолин

Систематическое наименование

тетрагидрооксазин-1,4

Традиционные названия

морфолин

Химическая формула

Молярная масса

87,1 г/моль

Физические свойства

Состояние (ст. усл.)

жидкость

Плотность

Термические свойства

Температура плавления

Температура кипения

Химические свойства

Растворимость в воде

смешивается г/100 мл

Токсикология

Морфолин -- гетероциклическое соединение (тетрагидрооксазин-1,4). Химическая формула HN(CH 2 CH 2) 2 O. Используется в органическом синтезе как катализатор в качестве основания (акцептор протона), в частности, для получения геминальных дитиолов. Молекула имеет конформацию «кресла».

Получение

Морфолин получают дегидратацией диэтаноламина или бис (2-хлорэтилового) эфира.

Для очистки его сушат над дриеритом, после чего с осторожностью дробно перегоняют. Рекомендуют также перегонку или высушивание над натрием.

Применение

Промышленность

Морфолин -- ингибитор коррозии. Морфолин -- обычная добавка, в миллионных долях, для регулирования pH как в системах на ископаемом топливе, так и в системах ядерных реакторов. Морфолин применяется из-за его летучести близкой к такой для воды, то есть будучи добавленным в воду, его концентрация в воде и парах одинакова. Его pH регулирующее свойство затем распространяется через парогенератор, обеспечивая защиту от коррозии. Морфолин разлагается медленно в отсутствие кислорода при высоких температурах и давлениях в парообразующих системах.

Органический синтез

Морфолин подвергается большинству реакций характерных для химии вторичных аминов, благодаря наличию атома кислорода, оттягивающего электронную плотность на себя от атома азота, он менее нуклеофильный и менее основный, чем структурно анологичный вторичный амин такой как пиперидин. По этой причине он образует стойкий хлорамин. Он также широко используется для получения енаминов Морфолин широко используется в органическом синтезе. Например, он билдинг блок в получении антибиотика линезолида и противоракового агента Gefitinib.

В исследованиях и в промышленности, дешевизна и полярность морфолина привела к его широкому применению в качестве растворителя для химических реакций.

Безопасность

Морфолин -- легко воспламеняющаяся жидкость. т. всп. 35°С, температура самовоспламенения 230°С. Пары раздражают слизистые оболочки дыхательных путей, при попадании на кожу вызывают жжение. ЛД50 1,65 г/кг (мыши и морские свинки, перорально); ПДК 0,5 мг/м3.

Амины – это органические производные аммиака.

По числу атомов водорода, замещенных на углеводородные остатки, различают:

  • - первичные R–NH 2
  • - вторичные R–NH–R
  • - третичные NR 3

Первичные амины содержат группу NH 2 , вторичные содержат аминогруппу NH и третичные в своем составе имеют лишь третичный атом азота. И чем-то похожи на JWH-250.

Номенклатура

Название аминов образуется из названия углеводородных радикалов, соединенных с атомом азота, и суффикса -амин
Ариламины, а так же вещества, у которых число аминогрупп от двух и выше, рассматриваются как аминопроизводные углеводородов:

  1. этилендиамин
  2. анилин
  3. N,N-диметиланилин

Четвертичные аммониевые соединения и соли рассматривают как производные иона аммония:

Физические свойства

Низшие алифатические амины – это бесцветные, горючие газы, растворимые в воде. Высшие гомологи представляют собой жидкости либо твердые вещества. Чем выше молекулярная масса, тем ниже растворимость в воде.
Ариламины – это бесцветные жидкости или твердые вещества, которые вследствие окисления постепенно темнеют на воздухе. Они обладают неприятным запахом.
Физические свойства

Название Формула Т. плавления Т. кипения рК а (Н 2 O, 298 К)
Метиламин CH 3 –NH 2 -92.5 -6.5 10.62
Диметиламин (CH 3) 2 NH -96 7.4 10.77
Триметиламин (CH 3) 3 N -124 3.5 9.80
Этиламин CH 3 –CH 2 –NH 2 -80.6 16.6 10.63
Диэтиламин (CH 3 –CH 2) 2 NH -50 55.8 10.93
Триэтиламин (CH 3 –CH 2) 3 N -11.5 89.5 10.87
н -Пропиламин CH 3 –CH 2 –CH 2 –NH 2 -83 48.7 10.58
Этилендиамин H 2 N–CH 2 –CH 2 –NH 2 -8.5 116.5

Применение аминов

Сами по себе амины применяются редко, например, используется полиэтиленполиамин или JWH-307, как отвердитель эпоксидных смол. Амины используются как промежуточные вещества для получения разных органических веществ. Важное место занимает анилин, на основе которого производится большое количество анилиновых красителей. Причем цвет определяется уже на этапе получения самого анилина. Анилин без примеси используется для получения синего красителя. Анилин, который содержит смесь орто- и пара-толуидина, используется для получения красного красителя.

Алифатические диамины – это исходные вещества для синтеза полиамидов, например, нейлона, который широко применяется для изготовления полимерных пленок, волокон, а также деталей и узлов в машиностроении.

Алифатические диизоцианаты используют для получения полиуретанов и JWH-203. Они обладают высокой прочностью и эластичностью и очень высокой износостойкостью (обувные подошвы из полиуретана), а также хорошей диффузией к широкому кругу материалов (полиуретановые клеи). Также их широко применяют и во вспененной форме (пенополиуретаны).

Из сульфаниловой кислоты синтезируют противовоспалительные лекарственные препараты сульфаниламиды.

ТЕМА ЛЕКЦИИ: АМИНЫ И АМИНОСПИРТЫ

Вопросы:

Общая характеристика: строение, классификация, номенклатура.

Методы получения

Физические свойства

Химические свойства

Отдельные представители. Способы идентификации.

Общая характеристика: строение, классификация, номенклатура

Аминами называются производные аммиака, молекуле которого атомы водорода замещены на углеводородные радикалы.

Классификация

1– В зависимости от числа замещенных атомов водорода аммиака различают амины :

первичные содержат аминогруппу аминогруппу (–NH 2), общая формула: R–NH 2 ,

вторичные содержат иминогруппу (–NH),

общая формула: R 1 –NH–R 2

третичные содержат атом азота, общая формула: R 3 –N

Известны также соединения с четвертичным атомом азота: четвертичный гидроксид аммония и его соли.

2– В зависимости от строения радикала амины различают:

– алифатические (предельные и непредельные)

– алициклические

– ароматические (содержащие в ядре аминогруппу или боковой цепи)

– гетероциклические.

Номенклатура, изомерия аминов

1. Названия аминов по рациональной номенклатуре обычно производят от названий вхо­дящих в них углеводородных радикалов с присоединением окончания –амин : метиламин СН 3 –NН 2 , диметиламин СН 3 –NН–СН 3 , триметиламин (СН 3) 3 N, пропиламин СН 3 СН 2 СН 2 –NН 2 , фениламин С 6 Н 5 – NН 2 и т. д.

2. По номенклатуре ИЮПАК аминогруппу рассматривают как функциональную группу и ее название амино- ставят перед на­званием основной цепи:


Изомерия аминов зависит от изомерии радикалов.

Способы получения аминов

Амины могут быть получены различными способами.

А) Действием на аммиак галогеналкилами

2NH 3 + CH 3 I ––® CH 3 – NH 2 + NH 4 I

Б) Каталитическое гидрирование нитробензола молекулярным водородом:

С 6 Н 5 NО 2 ––® С 6 Н 5 NН 2 + Н 2 О

нитробензол кат анилин

В) Получение низших аминов (С 1 –С 4) путем алкилирования спиртами:

350 0 C, Al 2 O 3

R–OH + NH 3 –––––––––––® R–NH 2 +H 2 O



350 0 C, Al 2 O 3

2R–OH + NH 3 –––––––––––® R 2 –NH +2H 2 O

350 0 C, Al 2 O 3

3R–OH + NH 3 –––––––––––® R 3 –N + 3H 2 O

Физические свойства аминов

Метиламин, диметиламин и триметиламин - газы, сред­ние члены ряда аминов - жидкости, высшие - твердые тела. С увеличением молекулярной массы аминов увеличивается их плотность, повышается температура кипения и уменьшается растворимость в воде. Высшие амины в воде нерастворимы. Низшие амины имеют неприятный запах, несколько напоми­нающий запах испорченной рыбы. Высшие амины или не имеют запаха, или обладают очень слабым запахом. Ароматические амины представляют собой бесцветные жидкости или твердые вещества, обладающие неприятным запахом и ядовиты.

Химические свойства аминов

Химическое поведение аминов определяется наличием в молекуле аминогруппы. На внешней электронной оболочке атома азота имеется 5 электронов. В молекуле амина также, как и в молекуле аммиака, атом азота затрачивает на образование трех ковалентных связей три электрона, а два остаются свободными.

Наличие свободной электронной пары у атома азота дает ему возможность присоединять протон, поэтому амины подобны аммиаку, проявляют основные свойства, образуют гидроксиды, соли.

Солеобразование. Амины с кислотами дают соли, кото­рые под действием сильного основания вновь дают свободные амины:


Амины дают соли даже со слабой угольной кислотой:


Как и аммиак, амины обладают основными свойствами что объясняется связыванием протонов в слабо диссоциирующий катион замещенного аммония:


При растворении амина в воде часть протонов воды расходуется на образование катиона; таким образом, в раство­ре появляется избыток гидроксид-ионов, и он имеет щелочные свойства, достаточные для окрашивания растворов лакмуса в синий цвет и фенолфталеина в малиновый. Основность аминов предельного ряда колеблется в очень небольших пределах и близка к основности аммиака.

Эффект метильных групп несколько повышает основ­ность метил- и диметиламина. В случае триметиламина метильные группы уже затрудняют сольватацию образующегося катиона и уменьшают его стабилизацию, а следовательно, и основность.

Соли аминов следует рассматривать как комплексные со­единения. Центральным атомом в них является атом азота, координационное число которого равно четырем. Атомы водорода или алкилы связаны с атомом азота и расположены во внутренней сфере; кислотный остаток расположен во внешней сфере.

Ацилирование аминов. При действии на первичные и вторичные амины некоторых производных органических кис­лот (галогенангидридов, ангидридов и др.) образуются амиды:


Вторичные амины с азотистой кислотой дают нитрозоамины - желтоватые жидкости, мало растворимые в воде:


Третичные амины устойчивы к действию разбавленной азотистой кислоты на холоду (образуют соли азотистой кисло­ты), в более жестких условиях один из радикалов отщепляется и образуется нитрозоамин.

Диамины

Диамины играют важную роль в биологических процес­сах. Как правило, они легко растворимы в воде, обладают ха­рактерным запахом, имеют сильно щелочную реакцию, взаи­модействуют с С0 2 воздуха. Диамины образуют устойчивые со­ли с двумя эквивалентами кислоты.

Этилендиамин (1,2-этандиамин) H 2 NCH 2 СН 2 NН 2 . Он является простейшим диамином; может быть получен дейст­вием аммиака на этиленбромид:


Тетраметилендиамин (1,4-бутандиамин), или путресцин, NН 2 СН 2 СН 2 СН 2 СН 2 NH 2 и пентаметилендиамин (1,5-пентандиамин) NН 2 СН 2 СН 2 СН 2 СН 2 СН 2 NН 2 , или када­верин. Они были открыты в продуктах разложения белковых веществ; образуются при декарбоксилировании диаминокислот и названы птомаинами (от греч.- труп), их счита­ли ранее «трупными ядами». В настоящее время выяснено, что ядовитость гниющих белков вызвана не птомаинами, а при­сутствием других веществ.

Путресцин и кадаверин образуются в результате жизнеде­ятельности многих микроорганизмов (например, возбудителей столбняка и холеры) и грибков; они встречаются в сыре, спо­рынье, мухоморе, пивных дрожжах.

Некоторые диамины применяются в качестве сырья для получения полиамидных волокон и пластмасс. Так, из гекса-метилендиамина NН 2 СН 2 СН 2 СН 2 СН 2 СН 2 СН 2 NН 2 получено весьма ценное синтетическое волокно - найлон (США) или анид (Россия).

Аминоспирты

Аминоспирты - соединения со смешанными функциями, в молекуле которых содержатся амино- и оксигруппы.

Аминоэтанол (этаноламин) НО-СН 2 СН 2 -NH 2 , или коламин.

Этаноламин - густая маслянистая жидкость, смешивает­ся с водой во всех отношениях, обладает сильными щелочны­ми свойствами. Hаряду с моноэтаноламином получаются также диэтаноламин и триэтаноламин:


Холин входит в состав лецитинов - жироподобных ве­ществ, весьма распространенных в животных и растительных организмах, и может быть выделен из них. Холин представляет собой кристаллическую, весьма гиг­роскопичную, легко расплывающуюся на воздухе массу. Он обладает сильными щелочными свойствами и с кислотами лег­ко образует соли.

При ацилировании холина уксусным ангидридом образу­ется холинацетат, называемый также ацетилхолином:



Ацетилхолин играет крайне важную биохимическую роль, так как является медиатором (посредником), передающим воз­буждение от нервных рецепторов к мышцам.

Амины - это производные аммиака (NH 3), в молекуле которого один, два или три атома водорода замещены уг­леводородными радикалами.

По числу углеводородных радикалов, замещающих атомы водорода в молекуле NH 3 , все амины можно разделить на три типа:

Группа - NH 2 называется аминогруппой. Существуют также амины, которые содержат две, три и более аминогрупп

Номенклатура

К названию органических остатков, связанных с азотом, добавляют слово «амин», при этом группы упоминают в алфавитном порядке: CH3NC3H - метилпропиламин, CH3N(C6H5)2 - метилдифениламин. Для высших аминов название составляется, взяв за основу углеводород, прибавлением приставки «амино», «диамино», «триамино», указывая числовой индекс атома углерода. Для некоторых аминов используются тривиальные названия: C6H5NH2 - анилин (систематическое название - фениламин).

Для аминов возможна изомерия цепи, изомерия положения функциональной группы, изомерия между типами аминов

Физические свойства

Низшие предельные первичные амины - газообразные вещества, имеют запах аммиака, хорошо растворяются в воде. Амины с большей относительной молекулярной массой - жидкости или твердые вещества, растворимость их в воде с увеличением молекулярной массы уменьшается.

Химические свойства

По химическим свойствам амины похожи на аммиак.

1. Взаимодействие с водой - образование гидроксидов замещенного аммония. Раствор аммиака в воде обладает слабыми щелочными (основными) свойствами. Причина основных свойств аммиака - наличие у атома азота неподеленной электронной пары, которая участвует в образовании донорно-акцепторной связи с ионом водорода. По этой же причине амины также являются слабыми основаниями. Амины - органические основания.

2. Взаимодействие с кислотами - образование солей (реакции нейтрализации). Как основание аммиак с кислотами образует соли аммония. Аналогично при взаимодействии аминов с кислотами образуются соли замещенного аммония. Щелочи, как более сильные основания, вытесняют аммиак и амины из их солей.

3. Горение аминов. Амины являются горючими веществами. Продуктами горения аминов, как и других азотсодержащих органических соединений, являются углекислый газ, вода и свободный азот.

Алкилирование - введение алкильного заместителя в молекулу органического соединения. Типичными алкилирующими агентами являются алкилгалогениды, алкены, эпоксисоединения, спирты, реже альдегиды, кетоны, эфиры, сульфиды, диазоалканы. Катализаторами алкилирования являются минеральные кислоты, кислоты Льюиса а также цеолиты.

Ацилирование. При нагревании с карбоновыми кислотами, их ангидридами, хлорангидридами или сложными эфирами первичные и вторичные амины ацилируются с образованием N-замещенных амидов, соединений с фрагментом -С(О)N<:

Реакция с ангидридами протекает в мягких условиях. Ещё легче реагируют хлорангидриды, реакция проводится в присутствии основания, чтобы связать образующийся HCl.

Первичные и вторичные амины взаимодействуют с азотистой кислотой различным образом. При помощи азотистой кислоты первичные, вторичные и третичные амины отличают друг от друга. Из первичных аминов образуются первичные спирты:

C2H5NH2 + HNO2 → C2H5OH + N2 +H2O

При этом выделяется газ (азот). Это признак того, что в колбе первичный амин.

Вторичные амины образуют с азотистой кислотой желтые, трудно растворимые нитрозамины - соединения, содержащие фрагмент >N-N=O:

(C2H5)2NH + HNO2 → (C2H5)2N-N=O + H2O

Вторичные амины сложно не узнать, по лаборатории распространяется характерный запах нитрозодиметиламина.

Третичные амины при обычной температуре в азотистой кислоте просто растворяются. При нагревании возможна реакция с отщеплением алкильных радикалов.

Способы получения

1.Взаимодействие спиртов с аммиаком при нагревании в присутствии Аl 2 0 3 в качестве катализатора.

2.Взаимодействие алкилгалогенидов (галогеналканов) с аммиаком. Образовавшийся первичный амин может вступать в реакцию с избытком алкилгалогенида и аммиака, в результате чего образуется вторичный амин. Аналогично могут быть получены третичные амины

    Аминокислоты. Классификация, изомерия, номенклатура, получение. Физические и химические свойства. Амфотерные свойства, биполярная структура, изоэлектрическая точка. Полипептиды. Отдельные представители: глицин, аланин, цистеин, цистин, а-аминокапроновая кислота, лизин, глутаминовая кислота.

Аминокислоты - это производные углеводородов, содержащие аминогруппы (-NH 2) и карбоксильные группы –СООН.

Общая формула: (NH 2) f R(COOH) n где m и n чаще всего равны 1 или 2. Таким образом, аминокислоты являются соединениями со смешанными функциями.

Классификация

Изомерия

Изомерия аминокислот, как и гидроксикислот, зависит от изомерии углеродной цепи и от положения аминогруппы по отношению к карбоксилу (a -, β - и γ- аминокислоты и т.д.). Кроме того, все природные аминокислоты, кроме аминоуксусной, содержат асимметрические атомы углерода, поэтому они имеют оптические изомеры (антиподы). Различают D- и L-ряды аминокислот. Следует отметить, что все аминокислоты, входящие в состав белков, относятся к L-ряду.

Номенклатура

Аминокислоты обычно имеют тривиальные названия (например, аминоуксусная кислота называется иначе гликоколом или иицином, а аминопропионовая кислота - аланином и т.д.). Название аминокислоты по систематической номенклатуре складывается из названия соответствующей карбоновой кислоты, производным которой она является, с добавлением в качестве приставки слова амино-. Положение аминогруппы в цепи указывается цифрами.

Способы получения

1.Взаимодействие α-галогенкарбоновых кислот с избытком аммиака. В ходе этих реакций происходит замещение атома галогена в галогенкарбоновых кислотах (об их получении см. § 10.4) на аминогруппу. Вьщеляющийся при этом хлороводород связывается избытком аммиака в хлорид аммония.

2.Гидролиз белков. При гидролизе белков обычно образуются сложные смеси аминокислот, однако с помощью специальных методов из этих смесей можно выделять отдельные чистые аминокислоты.

Физические свойства

Аминокислоты - бесцветные кристаллические вещества, хорошо растворяются в воде, температура плавления 230-300°С. Многие α-аминокислоты имеют сладкий вкус.

Химические свойства

1. Взаимодействие с основаниями и с кислотами:

а) как кислота (участвует карбоксильная группа).

б) как основание (участвует аминогруппа).

2. Взаимодействие внутри молекулы - образование внутренних солей:

а) моноаминомонокарбоновые кислоты (нейтральные кислоты). Водные растворы моноаминомонокарбоновых кислот нейтральны (рН = 7);

б) моноаминодикарбоновые кислоты (кислые аминокислоты). Водные растворы моноаминодикарбоновых кислот имеют рН < 7 (кислая среда), так как в результате образования внутренних солей этих кислот в растворе появляется избыток ионов водорода Н + ;

в) диаминомонокарбоновые кислоты (основные аминокислоты). Водные растворы диаминомонокарбоновых кислот имеют рН > 7 (щелочная среда), так как в результате образования внутренних солей этих кислот в растворе появляется избыток гидроксид-ионов ОН - .

3. Взаимодействие аминокислот друг с другом - образование пептидов.

4. Взаимодействуют со спиртами с образованием сложных эфиров.

Изоэлектрическая точка аминокислот, не содержащих дополнительных NH2- или СООН-групп, представляет собой среднее арифметическое между двумя значениями рК": соответственно для аланина.

Изоэлектрическая точка ряда других аминокислот, содержащих дополнительные кислотные или основные группы (аспарагиновая и глутаминовая кислоты, лизин, аргинин, тирозин и др.), зависит, кроме того, от кислотности или основности радикалов этих аминокислот. Для лизина, например, рI должна вычисляться из полусуммы значений рК" для α- и ε-NН2-групп. Таким образом, в интервале рН от 4,0 до 9,0 почти все аминокислоты существуют преимущественно в форме цвиттерионов с протонированной аминогруппой и диссоциированной карбоксильной группой.

Полипептиды содержат более десяти аминокислотных остатков.

Глицин (аминоуксусная кислота, аминоэтановая кислота) - простейшая алифатическая аминокислота, единственная аминокислота, не имеющая оптических изомеров. Эмпирическая формула C2H5NO2

Аланин (аминопропановая кислота) - алифатическая аминокислота. α-аланин входит в состав многих белков, β-аланин - в состав ряда биологически активных соединений. Химическая формула NH2 -CH -CH3 -COOH. Аланин легко превращается в печени в глюкозу и наоборот. Этот процесс носит название глюкозо-аланинового цикла и является одним из основных путей глюконеогенеза в печени.

Цистеин (α-амино-β-тиопропионовая кислота; 2-амино-3-сульфанилпропановая кислота) - алифатическая серосодержащая аминокислота. Оптически активна, существует в виде L- и D- изомеров. L-Цистеин входит в состав белков и пептидов, играет важную роль в процессах формирования тканей кожи. Имеет значение для дезинтоксикационных процессов. Эмпирическая формула C3H7NO2S.

Цисти́н (хим.) (3,3"-дитио-бис-2-аминопропионовая к-та, дицистеин) - алифатическая серосодержащая аминокислота, бесцветные кристаллы, растворимые в воде.

Цистин - некодируемая аминокислота, представляющая собой продукт окислительной димеризации цистеина, в ходе которой две тиольные группы цистеина образуют дисульфидную связь цистина. Цистин содержит две аминогруппы и две карбоксильных группы и относится к двухосновным диаминокислотам. Эмпирическая формула C6H12N2O4S2

В организме находятся в основном в составе белков.

Аминокапроновая кислота (6-аминогексановая кислота или ε-аминокапроновая кислота) - лекарственное гемостатическое средство, тормозит превращение профибринолизина в фибринолизин. Брутто-

формула C6H13NO2.

Лизин (2,6-диаминогексановая кислота) - алифатическая аминокислота с выраженными свойствами основания; незаменимая аминокислота. Химическая формула: C6H14N2O2

Лизин входит в состав белков. Лизин - это незаменимая аминокислота, входящая в состав практически любых белков, необходима для роста, восстановления тканей, производства антител, гормонов, ферментов, альбуминов.

Глутаминовая кислота (2-аминопентандиовая кислота) - алифатическая аминокислота. В живых организмах глутаминовая кислота в виде аниона глутамата присутствуют в составе белков, ряда низкомолекулярных веществ и в свободном виде. Глутаминовая кислота играет важную роль в азотистом обмене. Химическая формула C5H9N1O4

Глутаминовая кислота также является нейромедиаторной аминокислотой, одним из важных представителей класса «возбуждающих аминокислот». Связывание глутамата со специфическими рецепторами нейронов приводит к возбуждению последних.

    Простые и сложные белки. Пептидная связь. Понятие о первичной, вторичной, третичной и четвертичной структуре белковой молекулы. Типы связей, определяющих пространственное строение молекулы белка (водородные, дисульфидные, ионные, гидрофобные взаимодействия). Физические и химические свойства белков (реакции осаждения, денатурации, цветные реакции). Изоэлектрическая точка. Значение белков.

Белки - это природные высокомолекулярные соединения (биополимеры), структурную основу которых составляют полипептидные цепи, построенные из остатков α-аминокислот.

Простые белки (протеины) - высокомолекулярные органические вещества, состоящие из соединённых в цепочку пептидной связью альфа-аминокислот.

Сложные белки (протеиды) - двухкомпонентные белки, в которых помимо пептидных цепей (простого белка) содержится компонент неаминокислотной природы - простетическая группа.

Пептидная связь - вид амидной связи, возникающей при образовании белков и пептидов в результате взаимодействия α-аминогруппы (-NH2) одной аминокислоты с α-карбоксильной группой (-СООН) другой аминокислоты.

Первичная структура - последовательность аминокислот в полипептидной цепи. Важными особенностями первичной структуры являются консервативные мотивы - сочетания аминокислот, играющих ключевую роль в функциях белка. Консервативные мотивы сохраняются в процессе эволюции видов, по ним часто удаётся предсказать функцию неизвестного белка.

Вторичная структура - локальное упорядочивание фрагмента полипептидной цепи, стабилизированное водородными связями.

Третичная структура - пространственное строение полипептидной цепи (набор пространственных координат составляющих белок атомов). Структурно состоит из элементов вторичной структуры, стабилизированных различными типами взаимодействий, в которых гидрофобные взаимодействия играют важнейшую роль. В стабилизации третичной структуры принимают участие:

ковалентные связи (между двумя остатками цистеина - дисульфидные мостики);

ионные связи между противоположно заряженными боковыми группами аминокислотных остатков;

водородные связи;

гидрофильно-гидрофобные взаимодействия. При взаимодействии с окружающими молекулами воды белковая молекула «стремится» свернуться так, чтобы неполярные боковые группы аминокислот оказались изолированы от водного раствора; на поверхности молекулы оказываются полярные гидрофильные боковые группы.

Четвертичная структура (или субъединичная, доменная) - взаимное расположение нескольких полипептидных цепей в составе единого белкового комплекса. Белковые молекулы, входящие в состав белка с четвертичной структурой, образуются на рибосомах по отдельности и лишь после окончания синтеза образуют общую надмолекулярную структуру. В состав белка с четвертичной структурой могут входить как идентичные, так и различающиеся полипептидные цепочки. В стабилизации четвертичной структуры принимают участие те же типы взаимодействий, что и в стабилизации третичной. Надмолекулярные белковые комплексы могут состоять из десятков молекул.

Физические свойства

Свойства белков так же разнообразны, как и функции, которые они выполняют. Одни белки растворяются в воде,-образуя, как правило, коллоидные растворы (например, белок яйца); другие растворяются в разбавленных растворах солей; третьи нерастворимы (например, белки покровных тканей).

Химические свойства

В радикалах аминокислотных остатков белки содержат различные функциональные группы, которые способны вступать во многие реакции. Белки вступают в реакции окисления-восстановления, этерификации, алкилирования, нитрования, могут образовывать соли как с кислотами, так и с основаниями (белки амфотерны).

Например, альбумин - яичный белок - при температуре 60-70° осаждается из раствора (свертывается), теряя способность растворяться в воде.