Исследование радиоактивности препаратов. О методиках радиационной защиты в медицине и лжеспособах выведения радиации из организма

Общеизвестным является тот факт, что появление новых средств связи, успехи медицины, автомобилестроения, атомной энергетики, улучшение всех видов бытовых условий имеют не только положительное значение, но и свою вредную сторону.

Новые виды излучений, токсины, вредные строительные материалы стали оказывать на человека пагубное действие, вызывать заболевания и даже приводить к преждевременной смерти.

Речь в нашей короткой статье пойдет о способах защиты от радиационного облучения, в частности, .

Поговорим о методах официальной медицины и сопутствующих видах спекуляций и обмане всевозможных «народных» целителей, магов, астрологов, коммерческих культов, предлагающих за большие деньги 100% методы очистки.

Объективная необходимость радиационной защиты, преимущества и недостатки методов официальной медицины

Все знают то, что радионуклиды и , применяемые в медицине, приносят вред. О том, насколько это опасно, мы говорили в соответствующих .

Помимо радиоционнаго фона от медицинских процедур имеется общий фон загрязнения воздуха, воды, продуктов питания радиоактивными веществами. Техногенные катастрофы и вред от хозяйственной деятельности человека (к примеру, работа атомных электростанций) приводят к постоянному поступлению в организм новых вредоносных элементов, проникающих в окружающую нас среду.

Анализ и измерение уровней радиации показывает негативную тенденцию в этом плане. Не будем затрагивать тему доз, а попытаемся разобраться, можно ли как-то противостоять этому вреду. Какие имеются на сегодняшний день средства для достижения этой цели?

Радиационный вред известен уже давно. Первые научные попытки противостоять ему были предприняты более полувека назад. Именно тогда были синтезированы экспериментальные химические вещества, которые получили название радиопротекторов. Их вводили в организм за 10-30 минут до предполагаемого облучения.

В нынешнее время имеются несколько направлений, по которым идет поиск веществ, обладающих радиопротекторными свойствами.

  1. Разработка препаратов, способных при введении оказывать защитное действие от лучевого воздействия.
  2. Поиски средств, имеющих свойство повышать радиозащиту клеток при методах лучевой терапии.
  3. Применение пищевых добавок и препаратов, усиливающих устойчивость тканей организма при явлениях постоянного облучения.
  4. Использование имеющихся и поиски новых методов выведения радионуклидов, попавших в ткани.

Результаты в этой области исследований достигнуты немалые. Официальные, медицинские методы прошли научное подтверждение, клиническое испытание и могут спокойно применяться в целях радиозащиты.


Но методы эти имеют свои недостатки.

  1. Дороговизна препаратов.
  2. Побочное действие.
  3. Необходимость длительного и постоянного применения.

Совершенных методов защиты до сих пор нет.

Псевдонаучные методы «выведения радиации» из организма

На этом фоне появились лжецелители, преследующие единственную цель легкой наживы и имеющие «дипломы международного уровня» всевозможных псевдонаучных академий, организаций. Они стали предлагать «легкие и эффективные» методы выведения радиоизотопов и устранение вредных последствий нахождения их в организме.

Кто-то начал выводить ионизирующее излучение из тканей – полнейшая глупость, излучение вывести нельзя, его уже нет, есть только последствия. Важно : выводить из организма ионизирующее излучение – все равно, что выводить из кожи солнечные лучи.

Можно привести пример некой целительницы Семеновой, которая выводит радиацию многократными промываниями кишечника через шланг в течение 20 дней ежедневно, а затем раз в неделю. Мало того, что процедура абсолютно бесполезная, она еще приносит вред человеку. Постоянное введение жидкости в кишечник вызывает электролитный сбой, приводит к функциональным расстройствам перистальтики, запорам, атонии кишечника.

Псевдоизобретатели дошли до того, что дают людям под видом лекарств вещества, которые выводятся из организма в неизмененном виде и выдаются за радиационные камни, в которые якобы адсорбируются и радионуклиды и ионизирующая радиация(!!!).

Обманутые люди охотно верят и платят порой очень немалые средства за лжелечение, сопровождающееся обманными показами результатов.

Важно: обращаться за помощью по выведению ионизирующего излучения никуда не следует, это невозможно в принципе! Если вам кто-то предлагает вывести излучение из организма, да еще и за деньги, помните, вас обманывают!

Обращайтесь только в медицинские учреждения, где вам порекомендуют официальные и проверенные средства, будь то медицинские препараты или биоактивные пищевые добавки, которые прошли научное исследование и клинические испытания.

Отдельную плеяду лжеметодик преподносят экстрасенсы, которые «меняют энергетику биополя», тем самым якобы помогая выходу радионуклидам. Используют гипнотическое погружение человека в транс, меняют «карму», действуют на биоактивные точки энергетическими импульсами и т.д.

Все это ложь!

Обратите внимание : экстрасенсы и прочие ничего не выводят, но зато подвергают опасности ваше психическое здоровье. Много людей, прошедших сеансы «космических целителей», попадали затем в психиатрические стационары с ярко выраженными неврозами, психозами, другими видами расстройств. Описаны случаи самоубийств на фоне страхов, появившихся от общения с лжецелителями.

О выведении радионуклидов

Попробуем ответить на вопрос: есть ли какие-то вещества, продукты, которые способны выводить из организма радионуклиды?

Сайты, пропагандирующие выведение этих веществ из организма человека, кишат разнообразными рецептами. Чего только не предлагают. Пить молоко с шариками земли, добавлять в куриный помет, принимать смесь угля и мела в дозах, которые просто токсичны для человека.

Попробуем разобраться в механизме проникновения и действия изотопов.

Радионуклиды могут поступать в организм человека через:

  • желудочно-кишечный тракт;
  • повреждения кожи и слизистых;
  • органы дыхания.


Обратите внимание:
вещества, попадающие в желудок и кишечник, всасываются в кровь очень быстро. Вывести их из просвета этих органов можно только очень быстро промыв желудок и кишечник. После этого прием любых препаратов смысла не имеет. Радиоактивные изотопы уже в крови и двигаются далее к месту своей постоянной локализации. Так что прием внутрь «обезвреживающих» веществ, любых нейтрализаторов имеет смысл только в течение максимум 2-3 часов.

Еще несколько часов есть в запасе, если проводить «детоксикацию» в крови. Применять специальные препараты в растворах вместе с физ.раствором, глюкозой и другими стерильными жидкостями.

Важно: большая часть радионуклидов становится безвредной очень быстро благодаря естественно распаду. Изотопы с длительным периодом распада вывести из организма практически невозможно.

Если кто-то утверждает то, что он знает, как это сделать – он либо обманывается сам, либо обманывает других.

Из ран, порезов и других повреждений радионуклиды можно удалить в течение нескольких минут после попадания. Иначе они всасываются в кровь и любые мероприятия над раневыми поверхностями теряют смысл.

Еще печальнее обстоит вопрос с лёгкими. Вывести радиоактивные вещества из дыхательных путей практически невозможно.

О лжерадиопротекторах, обмане, коммерческих культах и недобросовестных ученых

Свою продукцию, «способствующую» выведению радиации вместе со шлаками из организма предлагали практически все коммерческие культы: «Тяньши, «Гербалайф», «Амвэй», «Цэптэр» и т.д.

Продукция их основана на биоактивных добавках. Но научных исследований, подтверждающих эффективность содержащихся в них веществ, нет. А иногда используется просто откровенный подлог и обман со ссылками на имеющиеся рецензии несуществующих исследовательских учреждений и «учёных» мирового уровня.

Более того, продукция этих фирм часто представляла собой совершенно не то, что декларировалось в описании к ним. Иногда в содержимом этой компании находили вещества, относящиеся к сильнодействующим фармацевтическим препаратом. Так было с эфедрином.

Люди, принимающие продукты Гербалайф и других коммерческих культов, попадают в психологическую, а иногда и в физическую зависимость от нее. Вызывается она методиками агрессивного маркетинга и навязывания. Вдобавок к сказанному следует отметить, что продукция имеет внушительную стоимость.

В медицинской науке пока нет единого мнения об эффективности действия подлинных БАДов. Проводимые научные эксперименты не имеют единого результата, часть работ свидетельствуют об имеющихся эффектах, к примеру, радиопротекторных, часть свидетельствует об обратном. Но, так как БАДы не относятся к лекарственным препаратам, то их производство и продажа практически бесконтрольны.

Поэтому, постоянно попадаются массы наименований продуктов, например «Сартар радиопротектор». Эта биоактивная добавка огромной стоимости, в описании к содержимому которой утверждается, что она обладает радиопротекторным свойством (без механизма объяснения). Также в инструкции имеется дополнение о том, что Сартар, конечно, хорош, но если в «ауре имеется дырка, то ее необходимо заполнить другими продуктами фирм, чтобы восстановить защитные свойства».

Печально, что многие люди попадаются на удочку откровенного психологического шантажа и обмана.

Неприятным является факт того, что даже среди врачей и ученых есть люди, которые ради корыстных целей начинают рекламировать биоактивные добавки, ссылаясь на некие научные исследования, которые позволили им делать выводы о радиопротекторных свойствах этих веществ. На самом деле никаких масштабных исследований в этой области, как правило, не проводилось.

Препараты, прошедшие научную методологию исследования их свойств, не показали наличие эффективности защиты от действия изотопов, или выведения их ускоренным способом. По крайней мере, эффективность их крайне слаба, а цена и время, потраченное на применение, сводят, все положительные свойства к нулю.

Среди БАДов не найден ни один эффективный радиопротектор.

Все врачи-практики сходятся во мнении, что только официальная медицина обладает возможностями оказания нормальной помощи. Часто, люди, которые проходят курс лечения, попадают под влияние обманщиков, рекламирующих свою продукцию. Больной человек перестает верить медицине, начинает «лечиться» шарлатанскими методами. Потом понимает, что его обманули, возвращается назад, к врачам, но бывает слишком поздно – самое благоприятное время уже ушло безвозвратно. Да, методы официальной медицины редко обещают быстрое и 100% исцеление. Иногда лечение занимают годы. Но выхода другого нет.

Доступные каждому и безопасные методы радиозащиты

Подводя итог, остается еще раз заметить: лечить последствия облучения, получать профилактическую защиту можно эффективно только в официальных медицинских учреждениях, иначе вы рискуете попасть в сети обмана и шарлатанства и можете потерять одну из своих главных ценностей – здоровье.

Логичный вопрос: как повысить радиоустойчивость организма человека и ускорить выход изотопов из тканей, не используя лекарственные препараты и не прибегая к помощи мошенников? Ответы вы найдете в статье « ». В ней приведены перечни продуктов, которые оказывают антирадиационное действие и ускоряют процесс выведения изотопов.

Лотин Александр Владимирович, врач-рентгенолог

В основе этого метода обследования лежит способность радиоактивных изотопов к излучению. Сейчас чаще всего проводят компьютерное радиоизотопное исследование - сцинтиграфию. Вначале пациенту в вену, в рот или ингаляционно вводят радиоактивное вещество. Чаще всего используются соединения короткоживущего изотопа технеция с различными органическими веществами.

Излучение от изотопов улавливает гамма-камера, которую помещают над исследуемым органом. Это излучение преобразуется и передается на компьютер, на экран которого выводится изображение органа. Современные гамма-камеры позволяют получить и его послойные «срезы». Получается цветная картинка, которая понятна даже непрофессионалам. Исследование проводится в течение 10-30 минут, и все это время изображение на экране меняется. Поэтому врач имеет возможность видеть не только сам орган, но и наблюдать за его работой.

Все другие изотопные исследования постепенно вытесняются сцинтиграфией. Так, сканирование, которое до появления компьютеров было основным методом радиоизотопной диагностики, сегодня применяется все реже. При сканировании изображение органа выводится не на компьютер, а на бумагу в виде цветных заштрихованных строчек. Но при этом методе изображение получается плоским и к тому же дает мало информации о работе органа. Да и больному сканирование доставляет определенные неудобства - оно требует от него полной неподвижности в течение тридцати-сорока минут.

Точно в цель

С появлением сцинтиграфии радиоизотопная диагностика получила вторую жизнь. Это один из немногих методов, который выявляет заболевание на ранней стадии. К примеру, метастазы рака в костях обнаруживаются изотопами на полгода раньше, чем на рентгене. Эти полгода могут стоить человеку жизни.

В некоторых случаях изотопы - вообще единственный метод, который может дать врачу информацию о состоянии больного органа. С их помощью обнаруживают заболевания почек, когда на УЗИ ничего не определяется, диагностируют микроинфаркты сердца, невидимые на ЭКГ и ЭХО-кардиограмме. Порой радиоизотопное исследование позволяет врачу «увидеть» тромбоэмболию легочной артерии, которая не видна на рентгене. Причем этот метод дает информацию не только о форме, строении и структуре органа, но и позволяет оценить его функциональное состояние, что чрезвычайно важно.

Если раньше с помощью изотопов обследовали только почки, печень, желчный пузырь и щитовидную железу, то сейчас положение изменилось. Радио-изотопная диагностика применяется практически во всех областях медицины, включая микрохирургию, нейрохирургию, трансплантологию. К тому же эта диагностическая методика позволяет не только поставить и уточнить диагноз, но и оценить результаты лечения, в том числе вести постоянное наблюдение за послеоперационными больными. К примеру, без сцинтиграфии не обойтись при подготовке больного к аортокоронарному шунтированию. А в дальнейшем она помогает оценить эффективность операции. Изотопы выявляют состояния, угрожающие жизни человека: инфаркт миокарда, инсульт, тромбоэмболию легочной артерии, травматические кровоизлияния в мозг, кровотечения и острые заболевания органов брюшной полости. Радиоизотопная диагностика помогает отличить цирроз от гепатита, разглядеть злокачественную опухоль на первой стадии, выявить признаки отторжения пересаженных органов.

Под контролем

Противопоказаний к радиоизотопному исследованию почти нет. Для его проведения вводится ничтожное количество короткоживущих и быстро покидающих организм изотопов. Количество препарата рассчитывается строго индивидуально в зависимости от веса и роста пациента и от состояния исследуемого органа. А врач обязательно подбирает щадящий режим исследования. И самое главное: облучение при радиоизотопном исследовании обычно даже меньше, чем при рентгенологическом. Радиоизотопное исследование настолько безопасно, что его можно проводить несколько раз в год и сочетать с рентгеном.

На случай непредвиденной поломки или аварии изотопное отделение в любой больнице надежно защищено. Как правило, оно расположено далеко от лечебных отделений - на первом этаже или в подвале. Полы, стены и потолки в нем очень толстые и покрыты специальными материалами. Запас радиоактивных веществ находится глубоко под землей в специальных просвинцованных хранилищах. А приготовление радиоизотопных препаратов производится в вытяжных шкафах со свинцовыми экранами.

Также ведется постоянный радиационный контроль с помощью многочисленных счетчиков. В отделении работает обученный персонал, который не только определяет уровень радиации, но и знает, что предпринять в случае утечки радиоактивных веществ. Кроме сотрудников отделения, уровень радиации контролируют специалисты СЭС, Госатомнадзора, Москомприроды и УВД.

Простота и надежность

Определенных правил во время радио-изотопного исследования должен придерживаться и пациент. Все зависит от того, какой орган предполагается обследовать, а также от возраста и физического состояния больного человека. Так, при исследовании сердца пациент должен быть готов к физическим нагрузкам на велоэргометре или на дорожке для ходьбы. Исследование будет более качественным, если его делать на голодный желудок. Ну и, конечно, нельзя принимать лекарственные препараты за несколько часов до исследования.

Перед сцинтиграфией костей пациенту придется выпить много воды и часто мочиться. Такая промывка поможет вывести из организма изотопы, которые не осели в костях. При исследовании почек тоже надо выпить побольше жидкости. Сцинтиграфию печени и желчных путей делают на голодный желудок. А щитовидная железа, легкие и головной мозг исследуются вообще без всякой подготовки.

Радиоизотопному исследованию могут помешать металлические предметы, оказавшиеся между телом и гамма-камерой. После введения препарата в организм надо подождать, пока тот достигнет нужного органа и распределится в нем. Во время самого исследования пациент не должен двигаться, иначе результат будет искажен.

Простота радиоизотопной диагностики дает возможность обследовать даже крайне тяжелых больных. Ее применяют и у детей, начиная с трех лет, в основном им исследуют почки и кости. Хотя, конечно, дети требуют дополнительной подготовки. Перед процедурой им дают успокаивающее, чтобы во время исследования они не вертелись. А вот беременным радиоизотопное исследование не проводят. Это связано с тем, что развивающийся плод очень чувствителен даже к минимальной радиации.

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

Мы, люди, живём в мире, который можно назвать радиоактивным. Места, где существует абсолютное отсутствие радиоактивности, в природе, среде обитания животных, людей нет. Радиоактивность - это природное образование, космические лучи, рассеянные в окружающей среде радиоактивные нуклиды, то есть вещества, которые создают радиоактивный фон, в котором мы живём. За время эволюции, всё живое приспособилось к этому уровню фона. Также нужно ещё учитывать, что уровень радиоактивности на Земле всё время понижается, каждые 10-15 тыс. лет уровень радиоактивности уменьшается примерно в два раза. В целом только крупные аварии на какой-то территории связанные, как правило, с атомными станциями нарушают этот средний уровень. И самым опасным для человека стечением обстоятельств считается, когда внутрь организма человека попадают радионуклиды. Причём, при внутреннем облучении наиболее опасное воздействие производят α-частицы. Принято считать, что эта опасность α-облучения вызвана их большой массой по сравнению с электронами и повышенной ионизирующей способностью из-за двойного заряда.

Актуальность работы заключается в том, что в общественном сознании практически закреплено представление об абсолютной опасности любого радиоактивного облучения, и поэтому представляется необходимым рассмотрение физической природы патологического воздействия радиоактивности на живые организмы и оценка уровней риска и опасности.

Цель работы: сделать попытку оценить тормозное электромагнитное излучение альфа-частиц как фактора патологического воздействия на живой организм при внутреннем облучении.

Задачи:

1.Ознакомиться с природой радиоактивности и методами ее исследования;

2.Исследовать возможность использования школьного физического оборудования;

3.Разработать эксперимент и исследовать его результат.

Гипотеза : одним из компонентов патологического действия на организм при внутреннем облучении является электромагнитное излучение, вызванное торможением (движением с отрицательным ускорением) на треке, и приводящее к нарушениям молекул ДНК за счёт большой плотности мощности излучения в группе клеток рядом с треком с последующим развитием онкологического заболевания.

Объект исследования: α-частица при её торможении в биологических тканях при внутреннем облучении.

Предмет исследования: компонент потери энергии α-частицы на электромагнитное излучение.

Часть 1. О природе радиации.

    1. Рис. 1. А.Беккерели

      ткрытие радиоактивности и его биологического действия

1896 г. Французский физик А.Беккерель, изучая явление люминесценции солей урана, установил, что урановая соль испускает лучи неизвестного типа, которые проходят сквозь бумагу, дерево, тонкие металлические пластины, ионизируют воздух. В феврале 1896 г. Беккерели не удалось провести очередной опыт из-за облачной погоды. Беккерель убрал пластинку в ящик стола, положив на неё сверху медный крест, покрытый солью урана. Проявив на всякий случай пластинку два дня спустя, он обнаружил на ней почернение в форме отчётливой тени крестика. Это означало, что соли урана самопроизвольно, без каких-либо внешних явлений, создают какое-то излучение. Начались интенсивные исследования.

1898 г. Мария Склодовская-Кюри, исследуя урановые руды, обнаружила новые химические элементы: полоний, радий. Оказалось, что все химические элементы, начиная с порядкового номера 83, обладают радиоактивностью. Явление самопроизвольного превращения неустойчивых изотопов в устойчивые, сопровождающееся испусканием частиц и излучением энергии, называется естественной радиоактивностью.

    1. Формы радиоактивности

1898 г. Подвергая радиоактивное излучение действию магнитного поля, Э.Резерфорд выделил два вида лучей: α-лучи - тяжёлые положительно заряженные частицы (ядра атомов гелия) и β-лучи - лёгкие отрицательно заряженные частицы (тождественны электронам).Два года спустя П. Виллард открыл гамма-лучи. Гамма-лучи - это электромагнитные волны с длиной волны от Гамма-лучи не отклоняются электрическими и магнитными полями.

Рис. 3. Альфа-излучение

Рис. 2. Влияние магнитного поля на траекторию движения частиц

Рис. 4. Бета-излучение

После установления Резерфортом структуры атома стало ястно, что радиоактивность представляет собой ядерный процесс.1902 г. Э.Резерфорд и Ф.Содди доказали, что в результате радиоактивного распада происходит превращение атомов одного химического элемента в атомы другого химического элемента, сопровождаемое испусканием различных частиц.

Альфа-частицы, бета-частицы, выброшенные из ядра, обладают значительной кинетической энергией и, воздействуя на вещество, с одной стороны производят его ионизацию, а с другой проникают на определенную глубину. Взаимодействуя с веществом, они теряют эту энергию, в основном в результате упругих взаимодействий с ядрами атомов или электронами, отдавая им всю или часть своей энергии, вызывая ионизацию или возбуждение атомов (т.е. перевод электрона с более близкой на более удаленную от ядра орбиту). Ионизация и проникновение на определенную глубину имеют принципиальное значение для оценки воздействия ионизирующего излучения на биологическую ткань различных видов излучений. Зная свойства различных видов излучений проникать через разные материалы, человек может использовать их для своей защиты.

Часть 2. Альфа - излучение и его характеристики

2.1. Патогенность и опасность α-излучения

Альфа-излучение — это поток ядер атомов гелия. Возникает в результате распада атомов тяжелых элементов, таких как уран, радий и торий. Вид радиоактивного распада ядра, в результате которого происходит испускание ядра гелия 4 He - альфа-частицы. При этом массовое число ядра уменьшается на 4, а атомный номер - на 2.

В общем виде формула альфа - распада выглядит следующем образом:

Пример альфа - распада для изотопа 238 U:

Рис.5. Альфа распад урана 238

Альфа-частицы, образованные при распаде ядра, имеют начальную кинетическую энергию в диапазоне 1,8—15 МэВ. При движении альфа-частицы в веществе она создаёт сильную ионизацию окружающих атомов, в результате очень быстро теряет энергию. Энергии альфа-частиц, возникающей в результате радиоактивного распада, не хватает даже для преодоления мёртвого слоя кожи, поэтому радиационный риск при внешнем облучении такими альфа-частицами отсутствует. Внешнее альфа-облучение опасно для здоровья только в случае высокоэнергичных альфа-частиц (с энергией выше десятков МэВ), источником которых является ускоритель. Однако проникновение альфа-активных радионуклидов внутри тела, когда облучению подвергаются непосредственно живые ткани организма, весьма опасно для здоровья, поскольку большая плотность ионизации вдоль трека частицы сильно повреждает биомолекулы. Считается, что при равном энерговыделении (поглощённой дозе) эквивалентная доза, набранная при внутреннем облучении альфа-частицами с энергиями, характерными для радиоактивного распада, в 20 раз выше, чем при облучении гамма- и рентгеновскими квантами. Таким образом, опасность для человека при внешнем облучении могут представлять α-частицы с энергиями 10 МэВ и выше, достаточными для преодоления омертвевшего рогового слоя кожного покрова. Гораздо большую опасность для человека представляют α-частицы, возникающие при альфа-распаде радионуклидов, попавших внутрь организма (в частности, через дыхательные пути или пищеварительный тракт). Достаточно микроскопического количества α-радиоактивного вещества, чтобы вызвать у пострадавшего острую лучевую болезнь, зачастую с летальным исходом.

Будучи довольно тяжелыми и положительно заряженными, альфа-частицы от радиоактивного распада имеют очень короткий пробег в веществе и при движении в среде быстро теряют энергию на небольшом расстоянии от источника. Это приводит к тому, что вся энергия излучения высвобождается в малом объеме вещества, что увеличивает шансы повреждения клеток при попадании источника излучения внутрь организма. Однако внешнее излучение от радиоактивных источников безвредно, поскольку альфа-частицы могут эффективно задерживаться несколькими сантиметрами воздуха или десятками микрометров плотного вещества — например, листом бумаги и даже роговым омертвевшим слоем эпидермиса, не достигая живых клеток. Даже прикосновение к источнику чистого альфа-излучения не опасно, хотя следует помнить, что многие источники альфа-излучения излучают также гораздо более проникающие типы излучения (бета-частицы, гамма-кванты, иногда нейтроны). Однако попадание альфа-источника внутрь организма приводит к значительному облучению.

Рис. 6. Проникающая способность альфа, бета частиц и гамма-квантов.

2.2. Расчет характеристик α-частицы

Существование электромагнитных волн было главным предсказанием. Дж.К.Максвелла (1876 г.), эта теория изложена в разделе школьного курса физики - электродинамика. «Электродинамика»- это наука об электромагнитных волнах, о природе их возникновения, распространении в разных средах, взаимодействии с различными веществами, структурами.

И в этой науке есть одно из фундаментальных утверждений, что любая имеющая электрический заряд частица, движущаяся с ускорением, является источником электромагнитного излучения.

Именно благодаря этому в рентгеновских установках рождаются рентгеновские волны при быстрой остановке потока электронов, которые после ускорения в приборе тормозятся при столкновении с анодом рентгеновской трубки.

Нечто аналогическое происходит за очень короткое время и с α-частицами, если их источник - ядра радиоактивных атомов, расположенных в среде. Имея при вылете из ядра большую скорость и пробежав всего от 5 до 40 микрон - α-частица останавливается. При этом, испытывая громаднейшее замедление и имея двойной заряд, не могут не создавать электромагнитный импульс.

Я, пользуясь обычными школьными законами механики и законом сохранения энергии, подсчитал начальную скорость α-частиц, величину отрицательного ускорения, время движения α-частицы до остановки, силу сопротивления её движения и развиваемую ей мощность.

Понятно, что энергия α-частицы идёт на разрушение клеток организма, ионизацию атомов, в одном случае больше, при вылете из других радиоактивных ядер меньше, но энергия излучения, созданная за короткое время пролета примерно от 5 до 40 микрон, не может превышать энергию α-частиц, которую они имеют при вылете.

При расчетах я использовал в качестве исходных известных характеристик, только энергию α-частиц (это её кинетическая энергия) и среднюю длину пробега в биологических тканях организма (L= 5 - 40 мкм). Массу α-частицы и её состав, я нашёл в справочнике.

Энергия их α-частиц равна 4-10 МэВ. Вот для таких α-частиц я и проводил расчёты.

Масса α-частицы равна 4 а.е.м.; 1 а.е.м.=1.660·10 -27 кг;

m = 4·1,660·10 -27 = 6,64·10 -27 кг - масса α-частицы.

Длина трека α-частицы.

q = 2 ·1,6·= 3,2 · - заряд

E к = 7МэВ = 7·10 6 ·1,6·10 -19 = 11,2·10 -13 Дж - кинетическая энергия α-частицы.

F = ma = 6.64·10 -27 ·8,4·10 18 =5,5 ·10 -8 Н- сила сопротивления α-частицы.

Таб.1 характеристика α-частицы.

.3.Мощность α-излучения и нормы электромагнитной безопасности

Данные из справочника:

1.Глубина δ проникновения электромагнитных волн частотой 10 ГГц в биологических тканях с большим содержанием воды (вода - поглотитель электромагнитных волн) составляет 3,43 мм (343 мкм). При проникновении электромагнитной волны на глубину δ её плотность мощности уменьшается в e=2,71 раза.

2.Из норм безопасности при времени воздействия менее 0,2 часа плотность мощности (критическая) не должна превышать

В (1) указаны глубины проникновения, ослабления электромагнитной волны для частоты 10 ГГц. В нашем случае одиночный импульс электромагнитной волны можно интерпретировать как положительную часть одного периода, т.е. наиболее близким значением частоты будет 230 ГГц.

Для биологической ткани в максимальной чистоте указанной в справочнике равной 10 ГГц. По нашим расчётам единичный импульс электромагнитной волны может быть представленным как короткий импульс частоты 230 ГГц. Из справочника можно сделать вывод, что с повышением частоты электромагнитных волн толщина δ уменьшается. Оценим толщину δ для нашего случая. Частота 230 ГГц превышает приведённую в справочнике 10 ГГц в 23 раза. Предполагая, что соотношению частот в 23 раза будет постоянным и для предшествующего участка диапазона (10 ГГц будет в 23 раза больше частоты 433 МГц) - для которого (т.е. в 10 раз). Тогда и для частоты 230 ГГц можно принять δ = 34 мкм.

Принимая, что, проходя из центра сферы, излучение через поверхности мысленно построенных сфер с общим центром и с расстоянием между ними, равны δ, то пройдя через n таких поверхностей начальная интенсивность (мощность) электромагнитной волны будет уменьшена в раз. Чтобы Расчёты оказались близкими к истине возьмём n при количестве слоёв равных 8; тогда

Так как; Начальную энергию электромагнитных волн можно оценить как 0,01; т.к механическая энергия альфа-частицы в основном тратится на образовании трека ионизированных частиц. Поэтому можно принять.

Будут убиты импульсом волны. Это подтверждают количественные оценки.

Т.к. расчётная плотность мощности излучения, исходящего из центра сферы и проходящего через неё при радиусе сферы (8δ =272 мкм) с площадью 4,65 , будет сопоставимой с критической плотности мощностью излучения требуемой нормы СанПиНа, можно утверждать, что внутри этой сферы, в её объёме все клетки погибнут.

Т.о. наши оценки приводят к результату, что все биологические клетки в объёме сферы, к поверхности которой проходит излучение из центра сферы от трека α-частицы погибнут, т.е. они будут находится в пространстве, объёме, через который проходит электромагнитная волна с плотностью мощности излучения, превышающей критическую плотность излучения, определённую нормами СанПиНа. Эти погибшие клетки (точнее их останки) за счёт механизмов регенерации организма практически без каких теперь либо последствий будут удалены из организма.

Самым опасным из последствий, такого электромагнитного шока для клеток будет то, что в некотором шаровом слое клеток, окружающих опасную сферу, будут такие полуубитые клетки, правильное функционирование некоторых наверняка будет нарушено тем электромагнитным импульсом, который «сломал» (разорвал, нарушил) структура ДНК, которая ответственна за «правильную» регенерацию данной клетки.

Часть 3. Разработка и проведение экспериментов

3.1. Измерение радиоактивного фона на территории МБОУ СОШ №11

Цель: измерить радиоактивный фон на территории МБОУ СОШ №11.

Гипотеза: осадки и ветер переносят разные виды частиц (в нашем случае нас интересуют именно радиоактивные частицы).

Оборудование: дозиметр.

Цифровой монитор излучения

Для экспериментов я использовал датчик ионизирующего излучения (дозиметр).Датчик ионизирующего излучения (дозиметр) предназначен для автоматического подсчёта числа попавших в него ионизирующих частиц. Прибор может использоваться для измерения уровня альфа-, бета- и гамма- излучения. Так как прибор оснащен собственным экраном, то его можно использовать независимо от компьютера и других устройств фиксации данных в полевых условиях для определения уровня радиации.

Рис. 7 Датчик ионизирующего излучения (дозиметр)

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ 1. Диапазоны измерений: . Х1: 0 - 0,5 мР/ч; 0 - 500 циклов/мин (СРМ); . Х2: 0 - 5 мР/ч; 0 - 5000 циклов/мин (СРМ); . Х3: 0 - 50 мР/ч; 0 - 50000 циклов/мин (СРМ). 2. Чувствительность: 1000 циклов/мин/мР/Ч относительно цезия-137. 3. Точность: . при визуальной калибровке: ± 20 % от полной шкалы; . при инструментальной калибровке: ± 10 % от полной шкалы. 4. Калибровка: применяется Цезий-137. 5. Диапазон рабочих температур: 0 - 50 °С. 6. Электропитание: . элемент питания (9В); . средний срок cлужбы элемента питания: 2000 часов при нормальном уровне фоновой радиации.

Ход работы: Для этого мы, в разные месяцы измеряли радиационный фон нашей школы. В зимний период направление ветра направленно в южную сторону (сторона AB).

Рис. 8 План МБОУ СОШ №11

Таб 2.Радиоактивный фон территории МБОУ СОШ №11.

Результаты

В южной стороне измеренный радиоактивный фон больше, чем в северной стороне, а это значит, ветер и осадки и правда переносят разные виды частиц.

Также я провел измерения у канализации (это точки F и K) и показатели дозиметра, там немного выше, а это доказывает то, что именно вода является переносчиком радионуклидов.

3.2.Исследование зависимости поглощенной дозы от расстояния до геометрического центра препарата при плоской геометрии.

Цель работы: исследование зависимости поглощенной дозы от расстояния до геометрического центра препарата при плоской геометрии.

Оборудование: линейка, дозиметр, гидроксид калия.

Ход работы: измерить радиоактивный уровень, отдаляя препарат от дозиметра на каждый сантиметр.

Рис. 9 Результаты зависимости поглощенной дозы от расстояния до геометрического центра препарата при плоской геометрии.

Эксперимент показывает, что при плоской геометрии радиоактивного препарата зависимость поглощённой дозы от расстояния до центра препарата отличается от квадратичной в случае точечного препарата. При плоской геометрии эта зависимость от расстояния более слабая.

Заключение.

Оценки и расчёты показывают, что плотность мощности излучения в области тканей, ближайшего окружения трека превышают в десятки раз допустимые нормы электромагнитной безопасности, что приводит к полной гибели клеток этой области. Но существующий механизм регенерации восстановит убитые клетки и сохранит все функции этих клеток. Главная опасность для организма - наличие шарового слоя клеток, окружающих эту центральную область. Клетки шарового слоя остаются живыми, но мощный электромагнитный импульс, может повлиять на молекулы их ДНК, что может привести к их неправильному развитию и образования их реплик с патологией онкологического характера.

Литература

1. Ш.А.Горбушкин - Азбука физики

2. Г.Д.Луппов - Опорные конспекты и тестовые задания («Учебная литература», 1996);

3.П.В.Глинская - Для поступающих в вузы («Братья Гринины», 1995);

Химическая энциклопедия (Советская Энциклопедия, 1985);

4.Гусев Н. Г., Климанов В. А., Машкович В. П., Суворов А. П. - Защита от ионизирующих излучений;

5.Абрамов А. И., Казанский Ю. А., Матусевич Е. С. Основы экспериментальных методов ядерной физики (3-е изд., перераб. и доп. М., Энергоатомиздат, 1985);

6.Нормы радиационной безопасности (НРБ-99/2009) (Минздрав России, 2009);

7.Моисеев А. А., Иванов В. И. Справочник по дозиметрии и радиационной гигиене (2-е изд., перераб. и доп. М., Атомиздат, 1974);

8.Физическая энциклопедия (Советская энциклопедия, 1994. Т. 4. Пойнтинга-Робертсона);

9.Мухин К. Н. - Экспериментальная ядерная физика (Кн. 1. Физика атомного ядра. Ч. I. Свойства нуклонов, ядер и радиоактивных излучений. — М.: Энергоатомиздат, 1993);

10.Биофизические характеристики тканей человека. Справочник/Березовский В.А. и др.; Киев: Наукова думка, 1990.-224 с.

Радиоактивность препаратов можно определить абсолютным, расчетным и относительным (сравнительным) методом. Последний наиболее распространен.

Абсолютный метод. Тонкий слой исследуемого материала наносится на специальную тончайшую пленку (10-15 мкг/см²) и помеща­ется внутрь детектора, в результате чего используется полный те­лесный угол (4) регистрации вылетающих, например, бета-частиц и достигается почти 100% эффективность счета. При работе с 4-счетчиком не нужно вводить многочисленные поправки, как при расчетном методе.

Активность препарата выражается сразу в единицах активнос­ти Бк, Кu, мКu и т.д.

Расчётным методом определяют абсолютную активность альфа и бета излучающих изотопов с применением обычных газоразрядных или сцинтилляционных счетчиков.

В формулу для определения активности образца введен ряд поправочных коэффициентов, учитывающих потери излучения при из­мерении.

А = N /  q r  m 2,22 10 ¹²

A - активность препарата в Кu;

N - скорость счета в имп/мин за вычетом фона;

- поправка на геометрические условия измерения (телесный угол);

-поправка на разрешающее время счетной установки;

-поправка на поглощение излучения в слое воздуха и в окне (или стенке) счетчика;

-поправка на самопоглощение в слое препарата;

q -поправка на обратное рассеяние от подложки;

r - поправка на схему распада;

-поправка на гамма-излучение при смешанном бета-, гамма-излучении;

m - навеска измерительного препарата в мг;

2,22 10 ¹² - переводной коэффициент от числа распадов в минуту к Ки (1Ки = 2,22*10¹²расп/мин).

Для определения удельной активности необходимо активность приходящуюся на 1 мг перевести на 1 кг.

Ауд = А*10 6 , (К u /кг)

Препараты для радиометрии могут быть приготовлены тонким, толстым или промежуточным слоем исследуемого материала.

Если исследуемый материал имеет слой половинного ослабления - 1/2,

то тонкие - при d<0,11/2, промежуточные - 0,11/2толстые (толстослойные препараты) d>41/2.

Все поправочные коэффициенты сами в свою очередь зависят от многих факторов и в свою очередь рассчитываются по сложным формулам. Поэтому расчетный метод очень трудоемок.

Относительный (сравнительный) метод нашел широкое приме­нение при определении бета-активности препаратов. Он основан на сравнении скорости счета от эталона (препарат с известной актив­ностью)со скоростью счета измеряемого препарата.

При этом должны быть полностью идентичные условия при из­мерении активности эталона и исследуемого препарата.

Апр = Аэт* N пр/ N эт , где

Аэт -активность эталонного препарата, расп/мин;

Апр -радиоактивность препарата (пробы), расп/мин;

Nэт-скорость счета от эталона, имп/мин;

Nпр -скорость счета от препарата (пробы), имп/мин.

В паспортах на радиометрическую и дозиметрическую аппара­туру указано обычно с какой погрешностью производятся измерения. Предельная относительная погрешность измерений (иногда ее назы­вают основной относительной погрешностью) указывается в процен­тах, например,  25%.Для разных типов приборов она может быть от  10% до90% (иногда указывается отдельно погрешность вида измерения для разных участков шкалы).

По предельной относительной погрешности ± % можно оп­ределить предельную абсолютную погрешность измерения. Если сняты показания прибора А, то абсолютная погрешностьА=А/100. (Если А=20 мР, а=25%, то реально А= (205)мР. Т.е. в пределах от15до25мР.

    Детекторы ионизирующих излучений. Классификация. Принцип и схема работы сцинтиляционного детектора.

Радиоактивные излучения могут быть обнаружены (выделены, детектированы) с помощью специальных устройств - детекто­ров, работа которых основана на физико-химических эффектах, возникающих при взаимодействии излучении с веществом.

Виды детекторов: ионизационные, сцинтиляционные, фотографические, химические, калориметрические, полупроводниковые и др.

Наибольшее распространение получили детекторы основанные на измерении прямого эффекта взаимодействия излучения с ве­ществом - ионизации газовой среды, Это: - ионизационные камеры;

- пропорциональные счетчики;

- счетчики Гейгера-Мюллера (газоразрядные счетчики) ;

- коронные и искровые счетчики,

а также сцинтилляционные детекторы.

Сцинтиляционный (люминисцентный) метод регистрации излучений основан на свойстве сцинтилляторов испускать видимое све­товое излучение (световые вспышки - сцинтилляции) под действием заряженных частиц, которые преобразуются фотоэлектронным умно­жителем в импульсы электрического тока.

Катод Диноды Анод Сцинтилляционный счетчик состоит из сцинтиллятора и

ФЭУ. Сцинцилляторы могут быть органические и

неорганические, в твердом, жидком или газовом

состоянии. Это йодистый литий, сер­нистый цинк,

йодистый натрий, монокристаллы анграцена, и др.

100 +200 +400 +500 вольт

Работа ФЭУ: - Под действием ядерных частиц и гамма квантов

в сцинтилляторе возбуждаются атомы и испускают кванты видимого цвета - фотоны.

Фотоны бомбардируют катод и выбивают из него фотоэлектроны:

Фотоэлектроны ускоряются электрическим полем первого динода, выбивают из него вторичные электроны, которые ускоряются полем второго динода и т. д., до образования лавинного потока элект­ронов попадающих на катод и регистрирующихся электронной схемой прибора. Эффективность счета сцинтилляционных счетчиков достигает 100%.Разрешающая способность значительно выше чем в ионизационных камерах(10 в-5-й - !0 в-8-й против 10¯³в ионизационных камерах). Сцинтиллиционные счетчики находят очень широкое применение в ра­диометрической аппаратуре

    Радиометры, назначение, классификация.

По назначению.

Радиометры - приборы, предназначенные для:

Измерения активности радиоактивных препаратов и источников излучения;

Определения плотности потока или интенсивности ионизирующих частиц и квантов;

Поверхностной радиоактивности предметов;

Удельной активности газов, жидкостей, твердях и сыпучих веществ.

В радиометрах в основном используются газоразрядные счетчики и сцинтилляционные детекторы.

Они подразделяются на переносные и стационарные.

Как правило они состоят из: -детектора-датчика импульсов;-импульсного усилителя;-пересчетного прибора;-электромеханического или электронного нумератора;-источника высокого напряжения для детектора;-источника питания для всей аппаратуры.

В порядке совершенствования выпускались: радиометры Б-2, Б-3, Б-4;

декатронные радиометры ПП-8, РПС-2; автоматизированные лаборатории "Гамма-1", "Гамма-2”, "Бета-2"; снабжённые ЭВМ, позволяющие просчитывать до нескольких тысяч образцов проб с автоматической распечаткой результатов. Широко используются установки ДП-100, радиометры КРК-1, СРП-68-01.

Указать назначение и характеристики одного из приборов.

    Дозиметры, назначение, классификация.

Промышленностью выпускается большое количество типов ра­диометрической и дозиметрической аппаратуры, которые могут быть классифицированы:

По способу регистрации излучения (ионизационные, сцинтилляционные и др.);

По виду регистрируемого излучения (,,,n,p)

Источнику питания (сетевые, батарейные);

По месту применения (стационарные, полевые, индивидуальные);

По назначению.

Дозиметры - приборы, измеряющие экспози­ционную и поглощенную дозу (или мощность дозы) излучения. В основном состоят из детектора, усилителя и измерительного уст­ройства, Детектором может служить ионизационная камера, газораз­рядный счетчик или сцинтилляционный счетчик.

Подразделяются на измерители мощности дозы - это ДП-5Б, ДП-5В, ИМД-5, и индивидуальные дозиметры - измеряют дозу излучения за промежуток времени. Это ДП-22В, ИД-1, КИД-1, КИД-2 и др. Они являются карманными дозиметрами, часть из них - прямопоказывающие.

Существуют спектрометрические анализаторы (АИ-З, АИ-5, АИ-100) - позволяющие автоматически определять радиоизотопный состав любых образцов (например, почв).

Имеется также большое количество сигнализаторов о превы­шении радиационного фона, степени загрязненности поверхностей. Например, СЗБ-03 и СЗБ-04 сигнализируют о превышении величины загрязненности рук бета-активными веществами.

Указать назначение и характеристики одного из приборов

    Оснащение радиологического отдела ветлаборатории. Характеристика и работа радиометра СРП-68-01.

Табельное оснащение радиологических отделов областных ветбаклабораторий и специальных районных или межрайонных радиологических групп (при районных ветбаклабораториях)

Радиометр ДП-100

Радиометр КРК-1 (РКБ-4-1ем)

Радиометр СРП 68-01

Радиометр “Бересклет”

Радиометр - дозиметр -01Р

Радиометр ДП-5В (ИМД-5)

Комплект дозиметров ДП-22В (ДП-24В).

Лаборатории могут оснащаться и другими типами радиометрической аппаратуры.

Большинство из указанных выше радиометров и дозиметров имеется на кафедре в лаборатории.

    Периодизация опасностей при аварии на АЭС.

В ядерных реакторах используется внутриядерная энергия, выделяющаяся при цепных реакциях деления U-235 и Pu-239. При цепной реакции деления, как в ядерном реакторе, так и в атомной бомбе образуется около 200 радиоактивных изотопов примерно 35 химических элементов. В атомном реакторе цепная реакция управляема, и ядерное топливо (U-235) “выгорает” в нём постепенно в течение 2-х лет. Продукты деления – радиоактивные изотопы –накапливаются в ТВЭЛ (тепловыделяющий элемент). В реакторе атомный взрыв произойти ни теоретически, ни практически не может. На ЧАЭС в результате ошибок персонала и грубого нарушения технологии произошёл тепловой взрыв, и р/а изотопы две недели выбрасывались в атмосферу, разносились ветрами по разным направлениям и, оседая на обширных территориях, создали пятнистое загрязнение местности. Из всех р/а изотопов наиболее биологически опасными оказались: Йод-131 (I-131) – с периодом полураспада (Т 1/2) 8 суток, Стронций - 90 (Sr-90) - Т 1/2 -28 лет и Цезий - 137 (Сs-137) - Т 1/2 -30 лет. На ЧАЭС в результате аварии было выброшено 5% топлива и накопившихся радиоактивных изотопов это - 50 МКи активности. По цезию-137 это эквивалентно 100 шт. 200 Кт. атомных бомб. Сейчас в мире более 500 реакторов, и ряд стран на 70-80 % обеспечивает себя электроэнергией за счёт АЭС, в России 15%. С учётом исчерпания в обозримом будущем органических запасов топлива основным источником энергии будет атомная.

Периодизация опасностей после аварии на ЧАЭС:

1. период острой йодной опасности (йод - 131) в течение 2-3 месяцев;

2. период поверхностного загрязнения (коротко и среднеживущие радионуклиды) - до конца 1986г.;

3. период корневого поступления (Сs-137, Sr-90) - с 1987 года на 90-100 лет.

    Естественные источники ионизирующих излучений. Космическое излучение и природные РВ. Доза от ЕРФ.

РАДИОАКТИВНЫЕ ПРЕПАРАТЫ - радиоактивные вещества, содержащие радиоактивные нуклиды, изготовленные в разнообразных формах и предназначенные для различных целей. В медицине Р. п. используются для диагностики заболеваний, а также лечения гл. обр. злокачественных новообразований.

Различают две группы Р. п.- закрытые и открытые.

Закрытые Р. п. заключены в оболочку из нетоксичного материала (платины, золота, нержавеющей стали и др.), препятствующую непосредственному контакту радиоактивного вещества с окружающей средой. У гамма-излучающих Р. п. оболочка выполняет функцию фильтра для бета-излучения (см.) и низкоэнергетического гамма-излучения (см.). Эти препараты применяют для аппликационной, внутритканевой и внутриполостной лучевой терапии (см.). Наиболее часто применяют гамма-излучающие Р. п., в которых в качестве радионуклидов используют искусственные радиоактивные изотопы кобальта (60 Co), золота (198 Au), тантала (182 Ta), цезия (131 Cs) и др. В прошлом широко использовался естественный радиоактивный нуклид радий. Применяют также препараты радиоактивного изотопа калифорния (252 Cf), являющегося в основном источником быстрых нейтронов (см. Нейтронная терапия). Закрытые Р. п. отличаются большим разнообразием внешней формы. Наибольшее распространение получили линейные Р. п. в виде игл и трубочек (цилиндров). Иглы представляют собой полые цилиндры, один конец которых заострен, а на другом имеется ушко для продергивания нити. Внутрь иглы помещают отрезки проволоки (штифты) диаметром, как правило, менее 1 мм из сплава никеля и кобальта, содержащего радиоактивный 60Со. Длина штифта называется активной длиной Р. п. В стандартные наборы входят кобальтовые иглы с длиной штифта от 5 до 50 мм, а общая длина игл - от 13,5 до 58,5 мм. Трубочки (цилиндры) отличаются от игл тем, что не имеют заостренного конца, активная длина их колеблется от 10 до 60 мм. В линейных Р. п. радионуклид распределен либо равномерно по всей длине - 0,0625 мкюри/мм (2,3 МБк/мм), либо неравномерно с повышенной линейной активностью на концах. Разновидностью линейных Р. п. являются отрезки кобальтовой, танталовой или иридиевой проволоки очень малого размера (диам. 0,7 мм, длина 3 мм), покрытой слоем золота или платины, которые вводят в нейлоновые полые нити (трубки). Используют также препараты 198Au, имеющие форму гранул диам. 0,8 мм и длиной 2,5 мм, поверхность которых покрыта слоем платины. Активность каждой гранулы порядка 3,5 мкюри (130 МБк). Помимо линейной, закрытые Р. п. могут иметь сферическую форму со сквозным отверстием в центре для продевания нити (радиоактивные бусы).

Иногда для поверхностных аппликаций предварительно из легко формующегося материала (воска, пластмассы) изготавливают муляж, повторяющий форму части поверхности, подвергающейся облучению. Этот муляж с внедренными в него закрытыми Р. п. называют радиоактивной маской. При внутритканевой лучевой терапии закрытые Р. п. в виде игл, штырьков, гранул, нейлоновых нитей внедряют непосредственно в ткань опухоли с помощью специальных инструментов (см. Радиологический инструментарий , Радиохирургия). При внутриполостной лучевой терапии (см. Гамма-терапия) закрытый Р. п. линейной формы вводят в эндостат - полую трубку, предварительно введенную в матку, мочевой пузырь, прямую кишку и др.

Открытые Р. п. - радионуклиды, находящиеся в различных агрегатных состояниях (истинные и коллоидные р-ры, газы, суспензии, рассасывающиеся нити и пленки), вступающие при их использовании в непосредственный контакт с органами и тканями, т. е. участвующие в обмене веществ и деятельности отдельных органов и систем. Открытые Р. п. применяют с диагностической и лечебной целями. Для диагностики используют препараты радионуклидов с коротким эффективным периодом полураспада (см.), что обусловливает незначительную лучевую нагрузку на организм. Они характеризуются отсутствием токсического действия и наличием бета- или гамма-излучения, к-рое может быть зарегистрировано методами радиометрии (см.). Наиболее широко применяют при исследовании функций почек, печени, головного мозга, легких и других органов, центральной и периферической гемодинамики различные соединения, меченные изотопами технеция (99m Tc), йода (131 I), индия (111 In, 113m In), а также газообразные Р. п. ксенона (133 Xe), криптона (85 Kr), кислорода (15 O) и др. Введение Р. п. в зависимости от их формы осуществляется путем приема внутрь, внутривенного введения, вдыхания и др. (см. Радиофармацевтические препараты).

С леч. целью открытые Р. п. чаще всего используют в виде коллоидных р-ров (см. Радиоактивные коллоиды). Выбор радионуклида определяется небольшим (желательно не более нескольких дней) периодом полураспада, небольшим эффективным периодом полувыведения соединения, подходящими физическими свойствами используемого излучения и отсутствием токсического действия на организм. Наиболее полно этим требованиям отвечают радиоактивные изотопы иттрия (90 Y), фосфора (32 P) и золота (198 Au). В ткань опухоли открытые Р. п. вводят путем инъекции с помощью защитных шприцев (см. Бета-терапия),

Р. п. изготавливаются промышленным способом и поставляются в леч. учреждения. Р. п. содержат в специальных защитных помещениях - хранилищах, откуда в транспортных свинцовых контейнерах доставляют в радиоманипуляционные (см. Радиологическое отделение). Подготовку и разведение открытых Р. п. производят в специальных боксах, вытяжных шкафах и радиоманипуляционных камерах, чтобы исключить возможность попадания радиоактивных изотопов на поверхность тела или внутрь организма медперсонала в результате загрязнения рук, инструментов, вдыхаемого воздуха (см. Противолучевая защита , Радиологическое защитно-технологическое оборудование).

Библиография: Зедгенидзе Г. А. и Зубовский Г. А. Клиническая радиоизотопная диагностика, М., 1968; Павлов А. С. Внутритканевая гамма- и бетатерапия злокачественных опухолей, М., 1967; Afterloading, 20 years of experience, 1955-1975, ed. by В. Hilaris, N. Y., 1975.

В. С. Даценко, М. А. Фадеева.