Первообразная дроби. Интегрирование дробно-рациональной функции

Введите функцию, для которой надо найти интеграл

После вычисления неопределённого интеграла, вы сможете получить бесплатно ПОДРОБНОЕ решение введённого вами интеграла.

Найдем решение неопределенного интеграла от функции f(x) (первообразную функции).

Примеры

С применением степени
(квадрат и куб) и дроби

(x^2 - 1)/(x^3 + 1)

Квадратный корень

Sqrt(x)/(x + 1)

Кубический корень

Cbrt(x)/(3*x + 2)

С применением синуса и косинуса

2*sin(x)*cos(x)

Арксинус

X*arcsin(x)

Арккосинус

X*arccos(x)

Применение логарифма

X*log(x, 10)

Натуральный логарифм

Экспонента

Tg(x)*sin(x)

Котангенс

Ctg(x)*cos(x)

Иррациональне дроби

(sqrt(x) - 1)/sqrt(x^2 - x - 1)

Арктангенс

X*arctg(x)

Арккотангенс

X*arсctg(x)

Гиберболические синус и косинус

2*sh(x)*ch(x)

Гиберболические тангенс и котангенс

Ctgh(x)/tgh(x)

Гиберболические арксинус и арккосинус

X^2*arcsinh(x)*arccosh(x)

Гиберболические арктангенс и арккотангенс

X^2*arctgh(x)*arcctgh(x)

Правила ввода выражений и функций

Выражения могут состоять из функций (обозначения даны в алфавитном порядке): absolute(x) Абсолютное значение x
(модуль x или |x| ) arccos(x) Функция - арккосинус от x arccosh(x) Арккосинус гиперболический от x arcsin(x) Арксинус от x arcsinh(x) Арксинус гиперболический от x arctg(x) Функция - арктангенс от x arctgh(x) Арктангенс гиперболический от x e e число, которое примерно равно 2.7 exp(x) Функция - экспонента от x (что и e ^x ) log(x) or ln(x) Натуральный логарифм от x
(Чтобы получить log7(x) , надо ввести log(x)/log(7) (или, например для log10(x) =log(x)/log(10)) pi Число - "Пи", которое примерно равно 3.14 sin(x) Функция - Синус от x cos(x) Функция - Косинус от x sinh(x) Функция - Синус гиперболический от x cosh(x) Функция - Косинус гиперболический от x sqrt(x) Функция - квадратный корень из x sqr(x) или x^2 Функция - Квадрат x tg(x) Функция - Тангенс от x tgh(x) Функция - Тангенс гиперболический от x cbrt(x) Функция - кубический корень из x

В выражениях можно применять следующие операции: Действительные числа вводить в виде 7.5 , не 7,5 2*x - умножение 3/x - деление x^3 - возведение в степень x + 7 - сложение x - 6 - вычитание
Другие функции: floor(x) Функция - округление x в меньшую сторону (пример floor(4.5)==4.0) ceiling(x) Функция - округление x в большую сторону (пример ceiling(4.5)==5.0) sign(x) Функция - Знак x erf(x) Функция ошибок (или интеграл вероятности) laplace(x) Функция Лапласа

Дробь называется правильной , если старшая степень числителя меньше старшей степени знаменателя. Интеграл правильной рациональной дроби имеет вид:

$$ \int \frac{mx+n}{ax^2+bx+c}dx $$

Формула на интегрирование рациональных дробей зависит от корней многочлена в знаменателе. Если многочлен $ ax^2+bx+c $ имеет:

  1. Только комплексные корни, то из него необходимо выделить полный квадрат: $$ \int \frac{mx+n}{ax^2+bx+c} dx = \int \frac{mx+n}{x^2 \pm a^2} $$
  2. Различные действительные корни $ x_1 $ и $ x_2 $, то нужно выполнить разложение интеграла и найти неопределенные коэффициенты $ A $ и $ B $: $$ \int \frac{mx+n}{ax^2+bx+c} dx = \int \frac{A}{x-x_1} dx + \int \frac{B}{x-x_2} dx $$
  3. Один кратный корень $ x_1 $, то выполняем разложение интеграла и находим неопределенные коэффициенты $ A $ и $ B $ для такой формулы: $$ \int \frac{mx+n}{ax^2+bx+c} dx = \int \frac{A}{(x-x_1)^2}dx + \int \frac{B}{x-x_1} dx $$

Если дробь является неправильной , то есть старшая степень в числителе больше либо равна старшей степени знаменателя, то сначала её нужно привести к правильному виду путём деления многочлена из числителя на многочлен из знаменателя. В данном случае формула интегрирования рациональной дроби имеет вид:

$$ \int \frac{P(x)}{ax^2+bx+c}dx = \int Q(x) dx + \int \frac{mx+n}{ax^2+bx+c}dx $$

Примеры решений

Пример 1
Найти интеграл рациональной дроби: $$ \int \frac{dx}{x^2-10x+16} $$
Решение

Дробь является правильной и многочлен имеет только комплексные корни. Поэтому выделим полный квадрат:

$$ \int \frac{dx}{x^2-10x+16} = \int \frac{dx}{x^2-2\cdot 5 x+ 5^2 - 9} = $$

Сворачиваем полный квадрат и подводим под знак дифференциала $ x-5 $:

$$ = \int \frac{dx}{(x-5)^2 - 9} = \int \frac{d(x-5)}{(x-5)^2-9} = $$

Пользуясь таблицей интегралов получаем:

$$ = \frac{1}{2 \cdot 3} \ln \bigg | \frac{x-5 - 3}{x-5 + 3} \bigg | + C = \frac{1}{6} \ln \bigg |\frac{x-8}{x-2} \bigg | + C $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ \int \frac{dx}{x^2-10x+16} = \frac{1}{6} \ln \bigg |\frac{x-8}{x-2} \bigg | + C $$
Пример 2
Выполнить интегрирование рациональных дробей: $$ \int \frac{x+2}{x^2+5x-6} dx $$
Решение

Решим квадратное уравнение: $$ x^2+5x-6 = 0 $$

$$ x_{12} = \frac{-5\pm \sqrt{25-4\cdot 1 \cdot (-6)}}{2} = \frac{-5 \pm 7}{2} $$

Записываем корни:

$$ x_1 = \frac{-5-7}{2} = -6; x_2 = \frac{-5+7}{2} = 1 $$

С учётом полученных корней, преобразуем интеграл:

$$ \int \frac{x+2}{x^2+5x-6} dx = \int \frac{x+2}{(x-1)(x+6)} dx = $$

Выполняем разложение рациональной дроби:

$$ \frac{x+2}{(x-1)(x+6)} = \frac{A}{x-1} + \frac{B}{x+6} = \frac{A(x-6)+B(x-1)}{(x-1)(x+6)} $$

Приравниваем числители и находим коэффициенты $ A $ и $ B $:

$$ A(x+6)+B(x-1)=x+2 $$

$$ Ax + 6A + Bx - B = x + 2 $$

$$ \begin{cases} A + B = 1 \\ 6A - B = 2 \end{cases} $$

$$ \begin{cases} A = \frac{3}{7} \\ B = \frac{4}{7} \end{cases} $$

Подставляем в интеграл найденные коэффициенты и решаем его:

$$ \int \frac{x+2}{(x-1)(x+6)}dx = \int \frac{\frac{3}{7}}{x-1} dx + \int \frac{\frac{4}{7}}{x+6} dx = $$

$$ = \frac{3}{7} \int \frac{dx}{x-1} + \frac{4}{7} \int \frac{dx}{x+6} = \frac{3}{7} \ln |x-1| + \frac{4}{7} \ln |x+6| + C $$

Ответ
$$ \int \frac{x+2}{x^2+5x-6} dx = \frac{3}{7} \ln |x-1| + \frac{4}{7} \ln |x+6| + C $$

Приводится вывод формул для вычисления интегралов от простейших, элементарных, дробей четырех типов. Более сложные интегралы, от дробей четвертого типа, вычисляются с помощью формулы приведения. Рассмотрен пример интегрирования дроби четвертого типа.

Содержание

См. также: Таблица неопределенных интегралов
Методы вычисления неопределенных интегралов

Как известно, любую рациональную функцию от некоторой переменной x можно разложить на многочлен и простейшие, элементарные, дроби. Имеется четыре типа простейших дробей:
1) ;
2) ;
3) ;
4) .
Здесь a, A, B, b, c - действительные числа. Уравнение x 2 + bx + c = 0 не имеет действительных корней.

Интегрирование дробей первых двух типов

Интегрирование первых двух дробей выполняется с помощью следующих формул из таблицы интегралов :
,
, n ≠ - 1 .

1. Интегрирование дроби первого типа

Дробь первого типа подстановкой t = x - a приводится к табличному интегралу:
.

2. Интегрирование дроби второго типа

Дробь второго типа приводится к табличному интегралу той же подстановкой t = x - a :

.

3. Интегрирование дроби третьего типа

Рассмотрим интеграл от дроби третьего типа:
.
Будем вычислять его в два приема.

3.1. Шаг 1. Выделим в числителе производную знаменателя

Выделим в числителе дроби производную от знаменателя. Обозначим: u = x 2 + bx + c . Дифференцируем: u′ = 2 x + b . Тогда
;
.
Но
.
Мы опустили знак модуля, поскольку .

Тогда:
,
где
.

3.2. Шаг 2. Вычисляем интеграл с A = 0, B=1

Теперь вычисляем оставшийся интеграл:
.

Приводим знаменатель дроби к сумме квадратов:
,
где .
Мы считаем, что уравнение x 2 + bx + c = 0 не имеет корней. Поэтому .

Сделаем подстановку
,
.
.

Итак,
.

Тем самым мы нашли интеграл от дроби третьего типа:

,
где .

4. Интегрирование дроби четвертого типа

И наконец, рассмотрим интеграл от дроби четвертого типа:
.
Вычисляем его в три приема.

4.1) Выделяем в числителе производную знаменателя:
.

4.2) Вычисляем интеграл
.

4.3) Вычисляем интегралы
,
используя формулу приведения:
.

4.1. Шаг 1. Выделение в числителе производной знаменателя

Выделим в числителе производную знаменателя, как мы это делали в . Обозначим u = x 2 + bx + c . Дифференцируем: u′ = 2 x + b . Тогда
.

.
Но
.

Окончательно имеем:
.

4.2. Шаг 2. Вычисление интеграла с n = 1

Вычисляем интеграл
.
Его вычисление изложено в .

4.3. Шаг 3. Вывод формулы приведения

Теперь рассмотрим интеграл
.

Приводим квадратный трехчлен к сумме квадратов:
.
Здесь .
Делаем подстановку.
.
.

Выполняем преобразования и интегрируем по частям.




.

Умножим на 2(n - 1) :
.
Возвращаемся к x и I n .
,
;
;
.

Итак, для I n мы получили формулу приведения:
.
Последовательно применяя эту формулу, мы сведем интеграл I n к I 1 .

Пример

Вычислить интеграл

1. Выделим в числителе производную знаменателя.
;
;


.
Здесь
.

2. Вычисляем интеграл от самой простой дроби.

.

3. Применяем формулу приведения:

для интеграла .
В нашем случае b = 1 , c = 1 , 4 c - b 2 = 3 . Выписываем эту формулу для n = 2 и n = 3 :
;
.
Отсюда

.

Окончательно имеем:

.
Находим коэффициент при .
.

См. также:

Все вышеизложенное в предыдущих пунктах позволяет нам сформулировать основные правила интегрирования рациональной дроби.

1. Если рациональная дробь неправильна, то ее представляют в виде суммы многочлена и правильной рациональной дроби (см. п. 2).

Этим самым интегрирование неправильной рациональной дроби сводят к интегрированию многочлена и правильной рациональной дроби.

2. Разлагают знаменатель правильной дроби на множители.

3. Правильную рациональную дробь разлагают на сумму простейших дробей. Этим самым интегрирование правильной рациональной дроби сводят к интегрированию простейших дробей.

Рассмотрим примеры.

Пример 1. Найти .

Решение. Под интегралом стоит неправильная рациональная дробь. Выделяя целую часть, получим

Следовательно,

Замечая, что , разложим правильную рациональную дробь

на простейшие дроби:

(см. формулу (18)). Поэтому

Таким образом, окончательно имеем

Пример 2. Найти

Решение. Под интегралом стоит правильная рациональная дробь.

Разлагая ее на простейшие дроби (см. формулу (16)), получим

Материал, изложенный в этой теме, опирается на сведения, представленные в теме "Рациональные дроби. Разложение рациональных дробей на элементарные (простейшие) дроби" . Очень советую хотя бы бегло просмотреть эту тему перед тем, как переходить к чтению данного материала. Кроме того, нам будет нужна таблица неопределенных интегралов .

Напомню пару терминов. О их шла речь в соответствующей теме , посему тут ограничусь краткой формулировкой.

Отношение двух многочленов $\frac{P_n(x)}{Q_m(x)}$ называется рациональной функцией или рациональной дробью. Рациональная дробь называется правильной , если $n < m$, т.е. если степень многочлена, стоящего в числителе, меньше степени многочлена, стоящего в знаменателе. В противном случае (если $n ≥ m$) дробь называется неправильной .

Элементарными (простейшими) рациональными дробями именуют рациональные дроби четырёх типов:

  1. $\frac{A}{x-a}$;
  2. $\frac{A}{(x-a)^n}$ ($n=2,3,4, \ldots$);
  3. $\frac{Mx+N}{x^2+px+q}$ ($p^2-4q < 0$);
  4. $\frac{Mx+N}{(x^2+px+q)^n}$ ($p^2-4q < 0$; $n=2,3,4,\ldots$).

Примечание (желательное для более полного понимания текста): показать\скрыть

Зачем нужно условие $p^2-4q < 0$ в дробях третьего и четвертого типов? Рассмотрим квадратное уравнение $x^2+px+q=0$. Дискриминант этого уравнения $D=p^2-4q$. По сути, условие $p^2-4q < 0$ означает, что $D < 0$. Если $D < 0$, то уравнение $x^2+px+q=0$ не имеет действительных корней. Т.е. выражение $x^2+px+q$ неразложимо на множители. Именно эта неразложимость нас и интересует.

Например, для выражения $x^2+5x+10$ получим: $p^2-4q=5^2-4\cdot 10=-15$. Так как $p^2-4q=-15 < 0$, то выражение $x^2+5x+10$ нельзя разложить на множители.

Кстати сказать, для этой проверки вовсе не обязательно, чтобы коэффициент перед $x^2$ равнялся 1. Например, для $5x^2+7x-3=0$ получим: $D=7^2-4\cdot 5 \cdot (-3)=109$. Так как $D > 0$, то выражение $5x^2+7x-3$ разложимо на множители.

Примеры рациональных дробей (правильных и неправильных), а также примеры разложения рациональной дроби на элементарные можно найти . Здесь нас будут интересовать лишь вопросы их интегрирования. Начнём с интегрирования элементарных дробей. Итак, каждый из четырёх типов указанных выше элементарных дробей несложно проинтегрировать, используя формулы, указанные ниже. Напомню, что при интегрировании дробей типа (2) и (4) предполагается $n=2,3,4,\ldots$. Формулы (3) и (4) требуют выполнение условия $p^2-4q < 0$.

\begin{equation} \int \frac{A}{x-a} dx=A\cdot \ln |x-a|+C \end{equation} \begin{equation} \int\frac{A}{(x-a)^n}dx=-\frac{A}{(n-1)(x-a)^{n-1}}+C \end{equation} \begin{equation} \int \frac{Mx+N}{x^2+px+q} dx= \frac{M}{2}\cdot \ln (x^2+px+q)+\frac{2N-Mp}{\sqrt{4q-p^2}}\arctg\frac{2x+p}{\sqrt{4q-p^2}}+C \end{equation}

Для $\int\frac{Mx+N}{(x^2+px+q)^n}dx$ делается замена $t=x+\frac{p}{2}$, после полученный интерал разбивается на два. Первый будет вычисляться с помощью внесения под знак дифференциала, а второй будет иметь вид $I_n=\int\frac{dt}{(t^2+a^2)^n}$. Этот интеграл берётся с помощью рекуррентного соотношения

\begin{equation} I_{n+1}=\frac{1}{2na^2}\frac{t}{(t^2+a^2)^n}+\frac{2n-1}{2na^2}I_n, \; n\in N \end{equation}

Вычисление такого интеграла разобрано в примере №7 (см. третью часть).

Схема вычисления интегралов от рациональных функций (рациональных дробей):

  1. Если подынтегральная дробь является элементарной, то применить формулы (1)-(4).
  2. Если подынтегральная дробь не является элементарной, то представить её в виде суммы элементарных дробей, а затем проинтегрировать, используя формулы (1)-(4).

Указанный выше алгоритм интегрирования рациональных дробей имеет неоспоримое достоинство - он универсален. Т.е. пользуясь этим алгоритмом можно проинтегрировать любую рациональную дробь. Именно поэтому почти все замены переменных в неопределённом интеграле (подстановки Эйлера, Чебышева, универсальная тригонометрическая подстановка) делаются с таким расчётом, чтобы после оной замены получить под интералом рациональную дробь. А к ней уже применить алгоритм. Непосредственное применение этого алгоритма разберём на примерах, предварительно сделав небольшое примечание.

$$ \int\frac{7dx}{x+9}=7\ln|x+9|+C. $$

В принципе, этот интеграл несложно получить без механического применения формулы . Если вынести константу $7$ за знак интеграла и учесть, что $dx=d(x+9)$, то получим:

$$ \int\frac{7dx}{x+9}=7\cdot \int\frac{dx}{x+9}=7\cdot \int\frac{d(x+9)}{x+9}=|u=x+9|=7\cdot\int\frac{du}{u}=7\ln|u|+C=7\ln|x+9|+C. $$

Для детальной информации рекомедую посмотреть тему . Там подробно поясняется, как решаются подобные интегралы. Кстати, формула доказывается теми же преобразованиями, что были применены в этом пункте при решении "вручную".

2) Вновь есть два пути: применить готовую формулу или обойтись без неё. Если применять формулу , то следует учесть, что коэффициент перед $x$ (число 4) придется убрать. Для этого оную четвёрку просто вынесем за скобки:

$$ \int\frac{11dx}{(4x+19)^8}=\int\frac{11dx}{\left(4\left(x+\frac{19}{4}\right)\right)^8}= \int\frac{11dx}{4^8\left(x+\frac{19}{4}\right)^8}=\int\frac{\frac{11}{4^8}dx}{\left(x+\frac{19}{4}\right)^8}. $$

Теперь настал черёд и для применения формулы :

$$ \int\frac{\frac{11}{4^8}dx}{\left(x+\frac{19}{4}\right)^8}=-\frac{\frac{11}{4^8}}{(8-1)\left(x+\frac{19}{4} \right)^{8-1}}+C= -\frac{\frac{11}{4^8}}{7\left(x+\frac{19}{4} \right)^7}+C=-\frac{11}{7\cdot 4^8 \left(x+\frac{19}{4} \right)^7}+C. $$

Можно обойтись и без применения формулы . И даже без вынесения константы $4$ за скобки. Если учесть, что $dx=\frac{1}{4}d(4x+19)$, то получим:

$$ \int\frac{11dx}{(4x+19)^8}=11\int\frac{dx}{(4x+19)^8}=\frac{11}{4}\int\frac{d(4x+19)}{(4x+19)^8}=|u=4x+19|=\\ =\frac{11}{4}\int\frac{du}{u^8}=\frac{11}{4}\int u^{-8}\;du=\frac{11}{4}\cdot\frac{u^{-8+1}}{-8+1}+C=\\ =\frac{11}{4}\cdot\frac{u^{-7}}{-7}+C=-\frac{11}{28}\cdot\frac{1}{u^7}+C=-\frac{11}{28(4x+19)^7}+C. $$

Подробные пояснения по нахождению подобных интегралов даны в теме "Интегрирование подстановкой (внесение под знак дифференциала)" .

3) Нам нужно проинтегрировать дробь $\frac{4x+7}{x^2+10x+34}$. Эта дробь имеет структуру $\frac{Mx+N}{x^2+px+q}$, где $M=4$, $N=7$, $p=10$, $q=34$. Однако чтобы убедиться, что это действительно элементарная дробь третьего типа, нужно проверить выполнение условия $p^2-4q < 0$. Так как $p^2-4q=10^2-4\cdot 34=-16 < 0$, то мы действительно имеем дело с интегрированием элементарной дроби третьего типа. Как и в предыдущих пунктах есть два пути для нахождения $\int\frac{4x+7}{x^2+10x+34}dx$. Первый путь - банально использовать формулу . Подставив в неё $M=4$, $N=7$, $p=10$, $q=34$ получим:

$$ \int\frac{4x+7}{x^2+10x+34}dx = \frac{4}{2}\cdot \ln (x^2+10x+34)+\frac{2\cdot 7-4\cdot 10}{\sqrt{4\cdot 34-10^2}} \arctg\frac{2x+10}{\sqrt{4\cdot 34-10^2}}+C=\\ =2\cdot \ln (x^2+10x+34)+\frac{-26}{\sqrt{36}} \arctg\frac{2x+10}{\sqrt{36}}+C =2\cdot \ln (x^2+10x+34)+\frac{-26}{6} \arctg\frac{2x+10}{6}+C=\\ =2\cdot \ln (x^2+10x+34)-\frac{13}{3} \arctg\frac{x+5}{3}+C. $$

Решим этот же пример, но без использования готовой формулы. Попробуем выделить в числителе производную знаменателя. Что это означает? Мы знаем, что $(x^2+10x+34)"=2x+10$. Именно выражение $2x+10$ нам и предстоит вычленить в числителе. Пока что числитель содержит лишь $4x+7$, но это ненадолго. Применим к числителю такое преобразование:

$$ 4x+7=2\cdot 2x+7=2\cdot (2x+10-10)+7=2\cdot(2x+10)-2\cdot 10+7=2\cdot(2x+10)-13. $$

Теперь в числителе появилось требуемое выражение $2x+10$. И наш интеграл можно переписать в таком виде:

$$ \int\frac{4x+7}{x^2+10x+34} dx= \int\frac{2\cdot(2x+10)-13}{x^2+10x+34}dx. $$

Разобьём подынтегральную дробь на две. Ну и, соответственно, сам интеграл тоже "раздвоим":

$$ \int\frac{2\cdot(2x+10)-13}{x^2+10x+34}dx=\int \left(\frac{2\cdot(2x+10)}{x^2+10x+34}-\frac{13}{x^2+10x+34} \right)\; dx=\\ =\int \frac{2\cdot(2x+10)}{x^2+10x+34}dx-\int\frac{13dx}{x^2+10x+34}=2\cdot\int \frac{(2x+10)dx}{x^2+10x+34}-13\cdot\int\frac{dx}{x^2+10x+34}. $$

Поговорим сперва про первый интеграл, т.е. про $\int \frac{(2x+10)dx}{x^2+10x+34}$. Так как $d(x^2+10x+34)=(x^2+10x+34)"dx=(2x+10)dx$, то в числителе подынтегральной дроби расположен дифференциал знаменателя. Короче говоря, вместо выражения $(2x+10)dx$ запишем $d(x^2+10x+34)$.

Теперь скажем пару слов и о втором интеграле. Выделим в знаменателе полный квадрат: $x^2+10x+34=(x+5)^2+9$. Кроме того, учтём $dx=d(x+5)$. Теперь полученную нами ранее сумму интегралов можно переписать в несколько ином виде:

$$ 2\cdot\int \frac{(2x+10)dx}{x^2+10x+34}-13\cdot\int\frac{dx}{x^2+10x+34} =2\cdot\int \frac{d(x^2+10x+34)}{x^2+10x+34}-13\cdot\int\frac{d(x+5)}{(x+5)^2+9}. $$

Если в первом интеграле сделать замену $u=x^2+10x+34$, то он примет вид $\int\frac{du}{u}$ и возьмётся простым применением второй формулы из . Что же касается второго интеграла, то для него осуществима замена $u=x+5$, после которой он примет вид $\int\frac{du}{u^2+9}$. Это чистейшей воды одиннадцатая формула из таблицы неопределенных интегралов . Итак, возвращаясь к сумме интегралов, будем иметь:

$$ 2\cdot\int \frac{d(x^2+10x+34)}{x^2+10x+34}-13\cdot\int\frac{d(x+5)}{(x+5)^2+9} =2\cdot\ln(x^2+10x+34)-\frac{13}{3}\arctg\frac{x+5}{3}+C. $$

Мы получили тот же ответ, что и при применении формулы , что, собственно говоря, неудивительно. Вообще, формула доказывается теми же методами, кои мы применяли для нахождения данного интеграла. Полагаю, что у внимательного читателя тут может возникнуть один вопрос, посему сформулирую его:

Вопрос №1

Если к интегралу $\int \frac{d(x^2+10x+34)}{x^2+10x+34}$ применять вторую формулу из таблицы неопределенных интегралов , то мы получим следующее:

$$ \int \frac{d(x^2+10x+34)}{x^2+10x+34}=|u=x^2+10x+34|=\int\frac{du}{u}=\ln|u|+C=\ln|x^2+10x+34|+C. $$

Почему же в решении отсутствовал модуль?

Ответ на вопрос №1

Вопрос совершенно закономерный. Модуль отсутствовал лишь потому, что выражение $x^2+10x+34$ при любом $x\in R$ больше нуля. Это совершенно несложно показать несколькими путями. Например, так как $x^2+10x+34=(x+5)^2+9$ и $(x+5)^2 ≥ 0$, то $(x+5)^2+9 > 0$. Можно рассудить и по-иному, не привлекая выделение полного квадрата. Так как $10^2-4\cdot 34=-16 < 0$, то $x^2+10x+34 > 0$ при любом $x\in R$ (если эта логическая цепочка вызывает удивление, советую посмотреть графический метод решения квадратных неравенств). В любом случае, так как $x^2+10x+34 > 0$, то $|x^2+10x+34|=x^2+10x+34$, т.е. вместо модуля можно использовать обычные скобки.

Все пункты примера №1 решены, осталось лишь записать ответ.

Ответ :

  1. $\int\frac{7dx}{x+9}=7\ln|x+9|+C$;
  2. $\int\frac{11dx}{(4x+19)^8}=-\frac{11}{28(4x+19)^7}+C$;
  3. $\int\frac{4x+7}{x^2+10x+34}dx=2\cdot\ln(x^2+10x+34)-\frac{13}{3}\arctg\frac{x+5}{3}+C$.

Пример №2

Найти интеграл $\int\frac{7x+12}{3x^2-5x-2}dx$.

На первый взгляд подынтегральая дробь $\frac{7x+12}{3x^2-5x-2}$ очень похожа на элементарную дробь третьего типа, т.е. на $\frac{Mx+N}{x^2+px+q}$. Кажется, что единcтвенное отличие - это коэффициент $3$ перед $x^2$, но ведь коэффициент и убрать недолго (за скобки вынести). Однако это сходство кажущееся. Для дроби $\frac{Mx+N}{x^2+px+q}$ обязательным является условие $p^2-4q < 0$, которое гарантирует, что знаменатель $x^2+px+q$ нельзя разложить на множители. Проверим, как обстоит дело с разложением на множители у знаменателя нашей дроби, т.е. у многочлена $3x^2-5x-2$.

У нас коэффициент перед $x^2$ не равен единице, посему проверить условие $p^2-4q < 0$ напрямую мы не можем. Однако тут нужно вспомнить, откуда взялось выражение $p^2-4q$. Это всего лишь дискриминант квадратного уравнения $x^2+px+q=0$. Если дискриминант меньше нуля, то выражение $x^2+px+q$ на множители не разложишь. Вычислим дискриминант многочлена $3x^2-5x-2$, расположенного в знаменателе нашей дроби: $D=(-5)^2-4\cdot 3\cdot(-2)=49$. Итак, $D > 0$, посему выражение $3x^2-5x-2$ можно разложить на множители. А это означает, что дробь $\frac{7x+12}{3x^2-5x-2}$ не является элементаной дробью третьего типа, и применять к интегралу $\int\frac{7x+12}{3x^2-5x-2}dx$ формулу нельзя.

Ну что же, если заданная рациональная дробь не является элементарной, то её нужно представить в виде суммы элементарных дробей, а затем проинтегрировать. Короче говоря, след воспользоваться . Как разложить рациональную дробь на элементарные подробно написано . Начнём с того, что разложим на множители знаменатель:

$$ 3x^2-5x-2=0;\\ \begin{aligned} & D=(-5)^2-4\cdot 3\cdot(-2)=49;\\ & x_1=\frac{-(-5)-\sqrt{49}}{2\cdot 3}=\frac{5-7}{6}=\frac{-2}{6}=-\frac{1}{3};\\ & x_2=\frac{-(-5)+\sqrt{49}}{2\cdot 3}=\frac{5+7}{6}=\frac{12}{6}=2.\\ \end{aligned}\\ 3x^2-5x-2=3\cdot\left(x-\left(-\frac{1}{3}\right)\right)\cdot (x-2)=3\cdot\left(x+\frac{1}{3}\right)(x-2). $$

Подынтеральную дробь представим в таком виде:

$$ \frac{7x+12}{3x^2-5x-2}=\frac{7x+12}{3\cdot\left(x+\frac{1}{3}\right)(x-2)}=\frac{\frac{7}{3}x+4}{\left(x+\frac{1}{3}\right)(x-2)}. $$

Теперь разложим дробь $\frac{\frac{7}{3}x+4}{\left(x+\frac{1}{3}\right)(x-2)}$ на элементарные:

$$ \frac{\frac{7}{3}x+4}{\left(x+\frac{1}{3}\right)(x-2)} =\frac{A}{x+\frac{1}{3}}+\frac{B}{x-2}=\frac{A(x-2)+B\left(x+\frac{1}{3}\right)}{\left(x+\frac{1}{3}\right)(x-2)};\\ \frac{7}{3}x+4=A(x-2)+B\left(x+\frac{1}{3}\right). $$

Чтобы найти коэффициенты $A$ и $B$ есть два стандартных пути: метод неопределённых коэффициентов и метод подстановки частных значений. Применим метод подстановки частных значений, подставляя $x=2$, а затем $x=-\frac{1}{3}$:

$$ \frac{7}{3}x+4=A(x-2)+B\left(x+\frac{1}{3}\right).\\ x=2;\; \frac{7}{3}\cdot 2+4=A(2-2)+B\left(2+\frac{1}{3}\right); \; \frac{26}{3}=\frac{7}{3}B;\; B=\frac{26}{7}.\\ x=-\frac{1}{3};\; \frac{7}{3}\cdot \left(-\frac{1}{3} \right)+4=A\left(-\frac{1}{3}-2\right)+B\left(-\frac{1}{3}+\frac{1}{3}\right); \; \frac{29}{9}=-\frac{7}{3}A;\; A=-\frac{29\cdot 3}{9\cdot 7}=-\frac{29}{21}.\\ $$

Так как коэффициенты найдены, осталось лишь записать готовое разложение:

$$ \frac{\frac{7}{3}x+4}{\left(x+\frac{1}{3}\right)(x-2)}=\frac{-\frac{29}{21}}{x+\frac{1}{3}}+\frac{\frac{26}{7}}{x-2}. $$

В принципе, можно такую запись оставить, но мне по душе более аккуратный вариант:

$$ \frac{\frac{7}{3}x+4}{\left(x+\frac{1}{3}\right)(x-2)}=-\frac{29}{21}\cdot\frac{1}{x+\frac{1}{3}}+\frac{26}{7}\cdot\frac{1}{x-2}. $$

Возвращаясь к исходному интегралу, подставим в него полученное разложение. Затем разобьём интеграл на два, и к каждому применим формулу . Константы я предпочитаю сразу выносить за знак интеграла:

$$ \int\frac{7x+12}{3x^2-5x-2}dx =\int\left(-\frac{29}{21}\cdot\frac{1}{x+\frac{1}{3}}+\frac{26}{7}\cdot\frac{1}{x-2}\right)dx=\\ =\int\left(-\frac{29}{21}\cdot\frac{1}{x+\frac{1}{3}}\right)dx+\int\left(\frac{26}{7}\cdot\frac{1}{x-2}\right)dx =-\frac{29}{21}\cdot\int\frac{dx}{x+\frac{1}{3}}+\frac{26}{7}\cdot\int\frac{dx}{x-2}dx=\\ =-\frac{29}{21}\cdot\ln\left|x+\frac{1}{3}\right|+\frac{26}{7}\cdot\ln|x-2|+C. $$

Ответ : $\int\frac{7x+12}{3x^2-5x-2}dx=-\frac{29}{21}\cdot\ln\left|x+\frac{1}{3}\right|+\frac{26}{7}\cdot\ln|x-2|+C$.

Пример №3

Найти интеграл $\int\frac{x^2-38x+157}{(x-1)(x+4)(x-9)}dx$.

Нам нужно проинтегрировать дробь $\frac{x^2-38x+157}{(x-1)(x+4)(x-9)}$. В числителе расположен многочлен второй степени, а в знаменателе - многочлен третьей степени. Так как степень многочлена в числителе меньше степени многочлена в знаменателе, т.е. $2 < 3$, то подынтегральная дробь является правильной. Разложение этой дроби на элементарные (простейшие) было получено в примере №3 на странице, посвящённой разложению рациональных дробей на элементарные. Полученное разложение таково:

$$ \frac{x^2-38x+157}{(x-1)(x+4)(x-9)}=-\frac{3}{x-1}+\frac{5}{x+4}-\frac{1}{x-9}. $$

Нам останется только разбить заданный интеграл на три, и к каждому применить формулу . Константы я предпочитаю сразу выносить за знак интеграла:

$$ \int\frac{x^2-38x+157}{(x-1)(x+4)(x-9)}dx=\int\left(-\frac{3}{x-1}+\frac{5}{x+4}-\frac{1}{x-9} \right)dx=\\=-3\cdot\int\frac{dx}{x-1}+ 5\cdot\int\frac{dx}{x+4}-\int\frac{dx}{x-9}=-3\ln|x-1|+5\ln|x+4|-\ln|x-9|+C. $$

Ответ : $\int\frac{x^2-38x+157}{(x-1)(x+4)(x-9)}dx=-3\ln|x-1|+5\ln|x+4|-\ln|x-9|+C$.

Продолжение разбора примеров этой темы расположено во второй части.