Теория вероятности формула математического ожидания. Формула математического ожидания

Математическое ожидание – это среднее значение случайной величины.

Математическим ожиданием дискретной случайной величины называют сумму произведений всех ее возможных значений на их вероятности:

Пример.

X -4 6 10
р 0,2 0,3 0,5


Решение: Математическое ожидание равно сумме произведений всех возможных значений X на их вероятности:

М (X) = 4*0,2 + 6*0,3 +10*0,5 = 6.


Для вычисления математического ожидания удобно расчеты проводить в Excel (в особенности когда данных много), предлагаем воспользоваться готовым шаблоном ().

Пример для самостоятельного решения (можете применить калькулятор).
Найти математическое ожидание дискретной случайной величины X, заданной законом распределения:

X 0,21 0,54 0,61
р 0,1 0,5 0,4

Математическое ожидание обладает следующими свойствами.

Свойство 1. Математическое ожидание постоянной величины равно самой постоянной: М(С)=С.

Свойство 2. Постоянный множитель можно выносить за знак математического ожидания: М(СХ)=СМ(Х).

Свойство 3. Математическое ожидание произведения взаимно независимых случайных величин равно произведению математических ожиданий сомножителей: М (Х1Х2 ...Хп)=М (X1) М {Х2)*. ..*М (Xn)

Свойство 4. Математическое ожидание суммы случайных величин равно сумме математических ожиданий слагаемых: М(Хг + Х2+...+Хn) = М{Хг)+М(Х2)+…+М(Хn).

Задача 189. Найти математическое ожидание случайной вели­ чины Z, если известны математические ожидания X н Y: Z = X+2Y, M(X) = 5, M(Y) = 3;

Решение: Используя свойства математического ожидания (математическое ожидание суммы равно сумме математических ожи­даний слагаемых; постоянный множитель можно вынести за знак математического ожидания), получим M(Z)=M(X + 2Y)=M(X) + M(2Y)=M(X) + 2M(Y)= 5 + 2*3 = 11.

190. Используя свойства мaтематического ожидания, доказать, что: а) М(Х - Y) = M(X)-М (Y); б) математическое ожидание отклонения X-M(Х) равно нулю.

191. Дискретная случайная величина X принимает три возможных значения: x1= 4 С вероятностью р1 = 0,5; xЗ = 6 С вероятностью P2 = 0,3 и x3 с вероятностью р3. Найти: x3 и р3, зная, что М(Х)=8.

192. Дан перечень возможных значений дискретной случайной величины X: x1 = -1, х2 = 0, x3= 1 также известны математические ожидания этой величины и ее квадрата: M(Х) = 0,1, М(Х^2)=0,9. Найти вероятности p1, p2,p3 соответствующие возможным значениям xi

194. В партии из 10 деталей содержится три нестандартных. Наудачу отобраны две детали. Найти математическое ожидание дискретной случайной величины X - числа нестандартных деталей среди двух отобранных.

196. Найти математическое ожидание дискретной слу­чайной величины X-числа таких бросаний пяти игральных костей, в каждом из которых на двух костях по­ явится по одному очку, если общее число бросаний равно двадцати.



Математическое ожидание биномиального распределения равно произведению числа испытаний на вероятность появления события в одном испытании:

Функция распределения содержит полную информацию о случайной величине. На практике функцию распределения не всегда можно установить; иногда такого исчерпывающего знания и не требуется. Частичную информацию о случайной величине дают числовые характеристики, которые в зависимости от рода информации делятся на следующие группы.
1. Характеристики положения случайной величины на числовой оси (мода Мo , медиана Мe , математическое ожидание М(Х )).
2. Характеристики разброса случайной величины около среднего значения (дисперсия D(X ), среднее квадратическое отклонение σ(х )).
3. Характеристики формы кривой y = φ(x ) (асимметрия As , эксцесс Ех ).
Рассмотрим подробнее каждую из указанных характеристик.
Математическое ожидание случайной величины Х указывает некоторое среднее значение, около которого группируются все возможные значения Х . Для дискретной случайной величины, которая может принимать лишь конечное число возможных значений, математическим ожиданием называют сумму произведений всех возможных значений случайной величины на вероятность этих значений:
. (2.4)
Для непрерывной случайной величины Х , имеющей заданную плотность распределения φ(x ) математическим ожиданием называется следующий интеграл:
. (2.5)
Здесь предполагается, что несобственный интеграл сходится абсолютно, т.е. существует.
Свойства математического ожидания:
1. М(С ) = C , где С = const ;
2. M(C Х) = С М(Х );
3. М(Х ± Y) = М(Х ) ± М(Y ), где X и Y – любые случайные величины;
4. М(Х Y )=М(Х )∙М(Y ), где X и Y – независимые случайные величины.
Две случайные величины называются независимыми , если закон распределения одной из них не зависит от того, какие возможные значения приняла другая величина.
Модой дискретной случайной величины, обозначаемой Мо , называется ее наиболее вероятное значение (рис. 2.3), а модой непрерывной случайной величины – значение, при котором плотность вероятности максимальна (рис. 2.4).



Рис. 2.3 Рис. 2.4
Медианой непрерывной случайной величины Х называется такое ее значение Ме, для которого одинаково вероятно, окажется ли случайная величина меньше или больше Ме , т.е.
Р(Х < Ме) = Р(X > Ме )
Из определения медианы следует, что Р(Х <Ме ) = 0,5, т.е. F (Ме ) = 0,5. Геометрически медиану можно истолковывать как абсциссу, в которой ордината φ(x ) делит пополам площадь, ограниченную кривой распределения (рис. 2.5). В случае симметричного распределения медиана совпадает с модой и математическим ожиданием (рис. 2.6).

Рис. 2.5 Рис. 2.6

Дисперсия.

Диспе́рсия случа́йной величины́ - мера разброса данной случайной величины, то есть её отклонения от математического ожидания. Обозначается D [X ] в русской литературе и (англ. variance ) в зарубежной. В статистике часто употребляется обозначение или . Квадратный корень из дисперсии, равный , называется среднеквадрати́чным отклоне́нием,станда́ртным отклоне́нием или стандартным разбросом. Стандартное отклонение измеряется в тех же единицах, что и сама случайная величина, а дисперсия измеряется в квадратах этой единицы измерения.

Из неравенства Чебышёва следует, что случайная величина удаляется от её математического ожидания на более чем k стандартных отклонений с вероятностью менее 1/k ². Так, например, как минимум в 75 % случаев случайная величина удалена от её среднего не более чем на два стандартных отклонения, а в примерно 89 % - не более чем на три.

Дисперсией случайной величины называется математическое ожидание квадрата ее отклонения от математического ожидания
D(X ) = M(X М(Х )) 2 .
Дисперсию случайной величины Х удобно вычислять по формуле:
а) для дискретной величины
; (2.6)
б) для непрерывной случайной величины
j(х )dx – 2 . (2.7)
Дисперсия обладает следующими свойствами:
1. D(C ) = 0, где С = const ;
2. D(C ×X ) = C 2 ∙D(X );
3. D (X ±Y ) = D (X ) + D (Y ), если X и Y независимые случайные величины.
Средним квадратическим отклонением случайной величины Х называется арифметический корень из дисперсии, т.е.
σ(X ) = .
Заметим, что размерность σ(х ) совпадает с размерностью самой случайной величины Х , поэтому среднее квадратическое отклонение более удобно для характеристики рассеяния.
Обобщением основных числовых характеристик случайных величин является понятие моментов случайной величины.
Начальным моментом k-го порядка α k случайной величины Х называется математическое ожидание величины Х k , т.е. α k = М(Х k ).
Начальный момент первого порядка – это математическое ожидание случайной величины.
Центральным моментом k-го порядка μ k случайной величины Х называется математическое ожидание величины (Х М(Х )) k , т.е. μ k = М(Х М(Х )) k .
Центральный момент второго порядка – это дисперсия случайной величины.
Для дискретной случайной величины начальный момент выражается суммой α k = , а центральный – суммой μ k = где р i = p(X = x i ). Для начального и центрального моментов непрерывной случайной величины можно получить следующие равенства:
α k = ,  μ k = ,
где φ(x ) – плотность распределения случайной величины Х.
Величина As = μ 3 / σ 3 называется коэффициентом асимметрии .
Если коэффициент асимметрии отрицательный, то это говорит о большом влиянии на величину m 3 отрицательных отклонений. В этом случае кривая распределения (рис.2.7) более полога слева от М(Х ). Если коэффициент As положительный, а значит, преобладает влияние положительных отклонений, то кривая распределения (рис.2.7) более полога справа. Практически определяют знак асимметрии по расположению кривой распределения относительно моды (точки максимума дифференциальной функции).


Рис. 2.7
Эксцессом Еk называется величина
Еk = μ 4 / σ 4 – 3.

Вопрос 24. Корреляция

Корреля́ция (корреляционная зависимость ) - статистическая взаимосвязь двух или нескольких случайных величин (либо величин, которые можно с некоторой допустимой степенью точности считать таковыми). При этом изменения значений одной или нескольких из этих величин сопутствуют систематическому изменению значений другой или других величин. Математической мерой корреляции двух случайных величин служит корреляционное отношение , либо коэффициент корреляции (или ) . В случае, если изменение одной случайной величины не ведёт к закономерному изменению другой случайной величины, но приводит к изменению другой статистической характеристики данной случайной величины, то подобная связь не считается корреляционной, хотя и является статистической .

Впервые в научный оборот термин «корреляция» ввёл французский палеонтолог Жорж Кювье в XVIII веке. Он разработал «закон корреляции» частей и органов живых существ, с помощью которого можно восстановить облик ископаемого животного, имея в распоряжении лишь часть его останков. В статистике слово «корреляция» первым стал использовать английский биолог и статистик Фрэнсис Гальтон в конце XIX века.

Некоторые виды коэффициентов корреляции могут быть положительными или отрицательными (возможна также ситуация отсутствия статистической взаимосвязи - например, для независимых случайных величин). Если предполагается, что на значениях переменных задано отношение строгого порядка, то отрицательная корреляция - корреляция, при которой увеличение одной переменной связано с уменьшением другой переменной, при этом коэффициент корреляции может быть отрицательным; положительная корреляция в таких условиях - корреляция, при которой увеличение одной переменной связано с увеличением другой переменной, при этом коэффициент корреляции может быть положительным.

Средние значения случайных величин

Предположим, что Х – дискретная случайная величина, которая в результате эксперимента принимала значения x 1 , x 2 ,…, x n с вероятностями p 1 , p 2 ,…, p n , . Тогда средним значением или математическим ожиданием величины X называется сумма , т.е. средневзвешенное значение величины Х, где весами служат вероятности p i .

Пример . Определить среднее значение ошибки регулирования e, если на основании большого числа опытов установлено, что вероятность ошибки р i равна:

e, % 0,1 0,15 0,2 0,25 0,3
р i 0,2 0,2 0,3 0,15 0,15

1. M [e] = 0,1×0,2 + 0,15×0,2 + 0,2×0,3 + 0,25×0,15 + 0,3×0,15 =

В том случае, если g(Х ) является функцией X (причем вероятность того, что X = x i равна p i ), то среднее значение функции определяется как

Предположим, что X – случайная величина с непрерывным распределением и характеризуется плотностью вероятности j(x ). Тогда вероятность того, что X заключена между x и x + Dх :

Величина X при этом приближенно принимает значение x . В пределе при Dx ® 0, можно предположить, что приращение Dx численно равно дифференциалу dx .

Произведя замену Dx = dх , получаем точную формулу для расчета среднего значения Х :

Аналогично для g(Х ):

Как правило, недостаточно бывает знать только среднее значение (математическое ожидание) случайной величины. Для оценки меры случайности величины (для оценки разброса конкретных значений X относительно математического ожидания M [X ]) вводится понятие дисперсии случайной величины. Дисперсия – среднее значение квадрата отклонения каждого конкретного значения X от математического ожидания. Чем больше дисперсия , тем больше случайности разброса величины от математического ожидания. Если случайная величина дискретная, то

Для непрерывной случайной величины дисперсию можно записать аналогично:

Дисперсия хорошо описывает разброс величины, но при этом есть один недостаток: размерность не соответствует размерности X . Чтобы избавиться от этого недостатка, часто в конкретных приложениях рассматривают не , а положительное значение , которое называется средним квадратическим отклонением .

1.3.2.1. Свойства математического ожидания

1. Математическое ожидание неслучайной величины равно самой этой величине M [C ] = C .

2. Неслучайный множитель С можно выносить за знак математического ожидания M [CX ] = CM [X ].

3. Математическое ожидание суммы случайных величин равно сумме математических ожиданий этих случайных величин.

4. Математическое ожидание произведения независимых случайных величин равно произведению математических ожиданий этих величин (условие независимости случайных величин).

1.3.2.2. Свойства дисперсии

1. Дисперсия неслучайной величины С равна нулю: D [C ]=0.

2. Дисперсия произведения неслучайного множителя С на случайную величину равна произведению С 2 на дисперсию случайной величины.

3. Дисперсия суммы независимых случайных величин X 1 и X 2 равна сумме дисперсий слагаемых

1.3.3. Моменты случайной величины

Пусть Х – непрерывная случайная величина. Если n – целое положительное число, а функция x n интегрируема на интервале (–¥; +¥), то среднее значение

n = 0, 1,…, n

называется начальным моментом порядка n случайной величины X .

Очевидно, что момент нулевого порядка

,

Каждая, отдельно взятая величина полностью определяется своей функцией распределения. Также, для решения практических задач хватает знать несколько числовых характеристик, благодаря которым появляется возможность представить основные особенности случайной величины в краткой форме.

К таким величинам относят в первую очередь математическое ожидание и дисперсия .

Математическое ожидание — среднее значение случайной величины в теории вероятностей. Обозначается как .

Самым простым способом математическое ожидание случайной величины Х(w) , находят как интеграл Лебега по отношению к вероятностной мере Р исходном вероятностном пространстве

Еще найти математическое ожидание величины можно как интеграл Лебега от х по распределению вероятностей Р Х величины X :

где - множество всех возможных значений X .

Математическое ожидание функций от случайной величины X находится через распределение Р Х . Например , если X - случайная величина со значениями в и f(x) - однозначная борелевская функция Х , то:

Если F(x) - функция распределения X , то математическое ожидание представимо интегралом Лебега - Стилтьеса (или Римана - Стилтьеса):

при этом интегрируемость X в смысле (* ) соответствует конечности интеграла

В конкретных случаях, если X имеет дискретное распределение с вероятными значениями х k , k=1, 2 , . , и вероятностями , то

если X имеет абсолютно непрерывное распределение с плотностью вероятности р(х) , то

при этом существование математического ожидания равносильно абсолютной сходимости соответствующего ряда или интеграла.

Свойства математического ожидания случайной величины.

  • Математическое ожидание постоянной величины равно этой величине:

C - постоянная;

  • M=C.M[X]
  • Математическое ожидание суммы случайно взятых величин равно сумме их математических ожиданий:

  • Математическое ожидание произведения независимых случайно взятых величин = произведению их математических ожиданий:

M=M[X]+M[Y]

если X и Y независимы.

если сходится ряд:

Алгоритм вычисления математического ожидания.

Свойства дискретных случайных величин: все их значения можно перенумеровать натуральными числами; каждому значению приравнять отличную от нуля вероятность.

1. По очереди перемножаем пары: x i на p i .

2. Складываем произведение каждой пары x i p i .

Напрмер , для n = 4 :

Функция распределения дискретной случайной величины ступенчатая, она возрастает скачком в тех точках, вероятности которых имеют положительный знак.

Пример: Найти математическое ожидание по формуле.

Математическим ожиданием (средним значением) случайной величины X , заданной на дискретном вероятностном пространстве, называется число m =M[X]=∑x i p i , если ряд сходится абсолютно.

Назначение сервиса . С помощью сервиса в онлайн режиме вычисляются математическое ожидание, дисперсия и среднеквадратическое отклонение (см. пример). Кроме этого строится график функции распределения F(X) .

Свойства математического ожидания случайной величины

  1. Математическое ожидание постоянной величины равно ей самой: M[C]=C , C – постоянная;
  2. M=C M[X]
  3. Математическое ожидание суммы случайных величин равно сумме их математических ожиданий: M=M[X]+M[Y]
  4. Математическое ожидание произведения независимых случайных величин равно произведению их математических ожиданий: M=M[X] M[Y] , если X и Y независимы.

Свойства дисперсии

  1. Дисперсия постоянной величины равна нулю: D(c)=0.
  2. Постоянный множитель можно вынести из-под знака дисперсии, возведя его в квадрат: D(k*X)= k 2 D(X).
  3. Если случайные величины X и Y независимы, то дисперсия суммы равна сумме дисперсий: D(X+Y)=D(X)+D(Y).
  4. Если случайные величины X и Y зависимы: D(X+Y)=DX+DY+2(X-M[X])(Y-M[Y])
  5. Для дисперсии справедлива вычислительная формула:
    D(X)=M(X 2)-(M(X)) 2

Пример . Известны математические ожидания и дисперсии двух независимых случайных величин X и Y: M(x)=8 , M(Y)=7 , D(X)=9 , D(Y)=6 . Найти математическое ожидание и дисперсию случайное величины Z=9X-8Y+7 .
Решение. Исходя из свойств математического ожидания: M(Z) = M(9X-8Y+7) = 9*M(X) - 8*M(Y) + M(7) = 9*8 - 8*7 + 7 = 23.
Исходя из свойств дисперсии: D(Z) = D(9X-8Y+7) = D(9X) - D(8Y) + D(7) = 9^2D(X) - 8^2D(Y) + 0 = 81*9 - 64*6 = 345

Алгоритм вычисления математического ожидания

Свойства дискретных случайных величин: все их значения можно перенумеровать натуральными числами; каждому значению сопоставить отличную от нуля вероятность.
  1. Поочередно умножаем пары: x i на p i .
  2. Складываем произведение каждой пары x i p i .
    Например, для n = 4: m = ∑x i p i = x 1 p 1 + x 2 p 2 + x 3 p 3 + x 4 p 4
Функция распределения дискретной случайной величины ступенчатая, она возрастает скачком в тех точках, вероятности которых положительны.

Пример №1 .

x i 1 3 4 7 9
p i 0.1 0.2 0.1 0.3 0.3

Математическое ожидание находим по формуле m = ∑x i p i .
Математическое ожидание M[X] .
M[x] = 1*0.1 + 3*0.2 + 4*0.1 + 7*0.3 + 9*0.3 = 5.9
Дисперсию находим по формуле d = ∑x 2 i p i - M[x] 2 .
Дисперсия D[X] .
D[X] = 1 2 *0.1 + 3 2 *0.2 + 4 2 *0.1 + 7 2 *0.3 + 9 2 *0.3 - 5.9 2 = 7.69
Среднее квадратическое отклонение σ(x) .
σ = sqrt(D[X]) = sqrt(7.69) = 2.78

Пример №2 . Дискретная случайная величина имеет следующий ряд распределения:

Х -10 -5 0 5 10
р а 0,32 2a 0,41 0,03
Найти величину a , математическое ожидание и среднее квадратическое отклонение этой случайной величины.

Решение. Величину a находим из соотношения: Σp i = 1
Σp i = a + 0,32 + 2 a + 0,41 + 0,03 = 0,76 + 3 a = 1
0.76 + 3 a = 1 или 0.24=3 a , откуда a = 0.08

Пример №3 . Определить закон распределения дискретной случайной величины, если известна её дисперсия, причем х 1 x 1 =6; x 2 =9; x 3 =x; x 4 =15
p 1 =0,3; p 2 =0,3; p 3 =0,1; p 4 =0,3
d(x)=12,96

Решение.
Здесь надо составить формулу нахождения дисперсии d(x) :
d(x) = x 1 2 p 1 +x 2 2 p 2 +x 3 2 p 3 +x 4 2 p 4 -m(x) 2
где матожидание m(x)=x 1 p 1 +x 2 p 2 +x 3 p 3 +x 4 p 4
Для наших данных
m(x)=6*0,3+9*0,3+x 3 *0,1+15*0,3=9+0.1x 3
12,96 = 6 2 0,3+9 2 0,3+x 3 2 0,1+15 2 0,3-(9+0.1x 3) 2
или -9/100 (x 2 -20x+96)=0
Соответственно надо найти корни уравнения, причем их будет два.
x 3 =8, x 3 =12
Выбираем тот, который удовлетворяет условию х 1 x 3 =12

Закон распределения дискретной случайной величины
x 1 =6; x 2 =9; x 3 =12; x 4 =15
p 1 =0,3; p 2 =0,3; p 3 =0,1; p 4 =0,3