Законы развития организмов. Основные законы эволюции живого вещества в биосфере

Каждый живой организм, несмотря на многообразие и разнообразие своих форм и адаптивных приспособлений к условиям существования и функционирования, в своем строении и развитии подчинен строго определенным биологическим законам.

1. Закон исторического развития. Все ныне живущие растительные и животные организмы, независимо от уровня их организации, прошли длительный путь своего исторического развития. Этот закон, впервые подмеченный М. В. Ломоносовым (1747) и сформулированный Ч. Дарвиным (1859), нашел дальнейшее развитие в трудах А. Н. Северцова (1912, 1939) и особенно И. И. Шмальгаузена (1934, 1964), обосновавших монофилетическую теорию происхождения наземных позвоночных.

2. Закон единства организма и среды, впервые четко обоснованный И. М. Сеченовым (1861), гласит о том, что Организм без внешней среды, поддерживающей его существование, невозможен, поэтому в научное определение организма должна входить и среда, влияющая на него». Все многообразиеживотных форм и различий их строения обусловлено особенностямиадаптации организмов к определенным условиям существования и функционирования. Единство организма и среды составляет основу эволюции органических форм, которое обеспечивается нервной системой. Ведущая роль нервной системы в этом процессе выступает как «тончайший инструмент, уравновешивающий организм с окружающей средой» (И. П. Павлов, 1927).

3. Закон целостности и неделимости организма. Этот закон выражается в том, что каждый организм является единым целым, в котором все органы и системы находятся в тесной генетической, морфологической и функциональной взаимосвязи, взаимозависимости и взаимообусловленности. Впервые высказанный классиками естествознания еще во второй половине XIII в., этот закон нашел убедительное обоснование в трудах И. М. Сеченова (1866) и особенно И. П. Павлова (1924, 1927).

4. Закон единства формы и функции. В основе жизнедеятельности каждого живого организма лежат физиологические и адекватные им морфологические реакции, которые под воздействием факторов внешней среды и целенаправленного воздействия человека подвергаются изменениям.

Антон Дорн (1875), сыгравший большую роль в развитии зоологии и сравнительной анатомии на принципах дарвинизма, разработал учение о смене функций. Он первый указал пути к исследованию эволюции их жизнедеятельности. В дальнейшем учение А. Дорна нашло широкое развитие в трудах Н. Клейнберга (1886), Л. Плате (1913), А. Н. Северцова (1912, 1939) и И. И. Шмальгаузена (1934, 1964), которыми указывалось, что каждая часть и каждый орган организма обладает несколькими функциями.

5. Закон наследственности и изменчивости. Наследственность - это исторически сложившееся в процессе смены поколений свойство живых организмов требовать определенных условий для своего развития, роста и жизнедеятельности. Наследственной основой, или генотипом организма, являются гены, обладающие большой устойчивостью и обеспечивающие относительное постоянство (консерватизм) видовых признаков, т. е. обусловливают фенотип живых организмов.


Фенотип - это совокупность внешних и внутренних признаков организма, обусловленных взаимодействием наследственной основы организма е условиями внешней среды. Управляя законами изменчивости (модификационной, мутационной, цитрплазматической), можно изменять не только фенотип организма, но и его генотип, что широко используется в селекционной работе. Знание законов передачи наследственных признаков имеет большое значение в медицинской и ветеринарной практике.

6. Закон гомологичных рядов гласит о том, что «чем ближе генетические виды, тем резче и точнее проявляется сходство рядов морфологических и физиологических признаков». Этот закон был подготовлен значительным числом исследователей, придававших.большое значение изучению гомологичных (сходных по развитию) органов (И. Гете, Ж. Кювье, Вик д"Азир, Э. Геккель, К- Гегенбаур), но нашел свое окончательное оформление в трудах Н. И. Вавилова (1920, 1922).

7. Закон экономии материала и места, согласно, которому каждый орган и каждая система построены так, чтобы при минимальной затрате строительного материала они могли бы выполнять максимальную работу Щ. Ф. Лесгафт, 1895). Подтверждение этого закона можно видеть в строении всех органов живого организма, и особенно он выражен в строении центральных отделов нервной системы, сердца, почек, печени, обладающих исключительно высокими потенциальными возможностями при выполнении своих функций.

8. Для всех позвоночных характерны общие принципы построения тела и гомологичных органов, а именно:

а) одноосность, или биполярность, выражающаяся в наличии двух дифференцированных полюсов тела - головного, или краниального, и заднего, или каудального; б) сегментарность, или метамерия;

в) антимерия (anti - против, meros - часть), двусторонняя, или билатеральная (bi - два, latus - сторона), симметрия, характеризующаяся зеркальным сходством правой и левой половин тела животного. Билатеральная симметрия, как и биполярность, есть отражение развития прямолинейного, поступательного движения, свойственного большинству хордовых;

г) закон трубкообразного построения. Все системы и аппараты животного организма развиваются как трубчатые образования (пищеварительная, дыхательная, мочевая, половая, нервная). Для большинства трубчатых органов присущ принцип трехслойное. Трубчатые структуры есть результат отражения закона экономии материала и места.

6. Понятие о норме, варианте, аномалии и патологии.

Под нормой строения тела животного понимается «гармоническая совокупность структурно-функциональных данных организма, адекватных его окружающей среде и обеспечивающих организму оптимальную жизнедеятельность» (Г. И. Царьгородцев).

Норма с точки зрения анатомии - наиболее часто встречающийся вариант строения конкретного вида животных, характеризующийся динамическим соответствием морфологических и физиологических особенностей организма изменяющимся условиям окружающей среды. В рамках видовой нормы и наряду с ней существует возрастная и половая изменчивость форм и строения, которая определяет также общие, но не для всего вида, а для определенной группы животных (популяция, порода) возрастные и половые нормы..

Варианты - разновидности общепринятой нормы, которые могут носить прогрессивные признаки, если они повышают жизненность организма или отвечают требованиям селекции, и регрессивные, когда в них проявляются признаки пройденного пути эволюционного развития. Резко выраженный регрессивный признак называется атавизмом (atavus - предок).

Аномалии - отклонения от нормы, характеризующиеся необычной топографией органов или частей тела, их чрезмерным или, наоборот, слабым развитием, не сопровождающимся глубокими нарушениями жизнедеятельности организма. Отсутствие или сверхкомплектностьорганов или частей тела животного, приводящие к тяжелым нарушениям всей жизнедеятельности организма или даже неспособности к существованию, носят название уродства. Последние чаще возникают при близкородственных разведениях животных или под влиянием каких-либо тератогенных факторов (повышенная радиация, воздействие химических веществ и т. п.). Наука, изучающая уродства и причины их возникновения, называется тератологией (teratus - уродства).

Патология - наука о болезнях, болезненных состояниях животного. Происходит это название от слова патос, что означает страдание, болезнь. Основу патологии составляет учение о нарушениях нормальных соотношений между организмом и внешней средой.

Организм постоянно подвергается воздействию различных раздражителей со стороны внешней среды. К нормальным, обычным раздражителям организм приспособлен в ходе своего развития, хотя они и подвержены различным колебаниям. Эти колебания уравновешиваются защитными и регулирующими механизмами организма. Однако воздействия часто отклоняются от нормальных, приобретая характер чрезвычайных, необычных, извращенных, тогда и развиваются патологические процессы.

Экология как наука. Основные термины, определения и законы экологии.

Экология как наука.

Экология (грец. "ойкос" — дом, жилье и грец. "логос" — учение ) — наука (область знаний), которая изучает взаимодействие организмов и их группировок со средой существования. Как самостоятельная наука она сформировалась в конце XІX ст. Термин "экология" ввел немецкий биолог Ернст Геккель в 1866 г.

Как и любая другая наука, экология имеет научный и прикладной аспекты.

Научный аспект — это стремление к познанию ради самого познания, и в этом плане на первое место вытекает поиск закономерностей развития природы и их объяснение.

Прикладной аспект — это применение собранных знаний для решения проблем, связанных с окружающей средой.

Всевозрастающее значение современной экологии заключается в том, что ни одно из больших практических вопросов настоящего не может решаться без учета связей между живыми и безжизненными компонентами природы.

Задачи экологии.

Задачи современной экологии как самостоятельной научной дисциплины:

1. Исследование закономерностей организации жизни, в том числе в связи с антропогенными воздействиями на природные системы и биосферу в целом.

2. Создание научной основы эксплуатации биологических ресурсов, прогноз изменений природы под влиянием деятельности человека и управления процессами, протекающими в биосфере, сохранение среды обитания человека, пригодной для нормального его существования.

3. Разработка системы мероприятий, обеспечивающих минимум применения химических средств борьбы с вредными видами.

4. Регуляция численности живых организмов.

5. Экологическая индикация при определении свойств тех или иных элементов ландшафта, а том числе индикация состояния и степени загрязнения природных сред.

Основная задача прикладной экологии — познание законов и закономерностей взаимодействия человеческого общества с биосферой (с развитием космонавтки границы этой науки расширяются за границы биосферы, а именно — к границе Вселенной).

Цель выполнения основной задачи прикладной экологии — предотвращение нарушения экологического равновесия вследствие антропогенного действия на окружающую природную среду

Для достижения поставленной цели разрабатываются меры по обеспечению экологической и техногенной безопасности биосферы (Вселенной).

К областям антропогенной деятельности принадлежат промышленность, сельское хозяйство, военно-промышленный комплекс, жилищно-коммунальное хозяйство, транспорт, рекреационный комплекс, наука и культура и т.п..

Понятие биосферы

Согласно воззрениям основоположника современного учения о биосфере – выдающегося русского геохимика В.И.Вернадского (1868-1945), с момента возникновения жизни на нашей планете (ориентировочно 3,4-4,0 млрд. лет назад) происходил процесс длительного формирования определенного единства живой и неживой материи, т.е. биосферы.

Биосфера (грец . "біос" — жизнь, "сфера" – сфера) это наружная оболочка Земли, область распространения жизни, которая включает все живые организмы и все элементы неживой природы, образующие среду обитания живого.

Биосфера – область распространения жизни на Земле, состав, структура и энергетика которой определяется главным образом прошлой или современной деятельностью живых организмов, включает населённую организмами верхнюю часть литосферы, гидросферу и нижнюю часть атмосферы (тропосферу).

Понятие экосистемы

Основой (элементарной) функциональной единицей биосферы – есть экосистема – это единый природный комплекс, созданный за длительное время живыми организмами и окружающей средой их обитания и где все компоненты тесно связаны обменом веществ и энергии:

Пример:

Микроэкосистема – пень с грибами;

Пезоэкосистема – участок леса;

Макроэкосистема – континент, океан.

Экосистемы характеризуются:

А) видовым или популяционным составом;

Б) количественным взаимоотношениям видовых популяций;

В) пространственным распределением отдельных элементов;

Г) совокупностью всех связей.

Экосистема – это открытая термодинамическая функционально целостная система, существующая за счет поступления с окружающей среды энергии и частично вещества, которые само развиваются и саморегулируются.

Самое важное понятие – гомеостаз – это состояние внутреннего динамического равновесия природной системы (экосистемы), что поддерживается постоянным и регулярным обновлением ее основных элементов и вещественно-энергетического состава, а также постоянным функциональным саморегулированием компонентов.

Вид – это совокупность организмов с родственными морфологическими признаками, которые могут скрещиваться один с другим и имеют общий генофонд.

Вид подчиняется роду, но имеет подвид и популяцию. Популяция – это совокупность особей одного вида с одинаковым генофондом, живущих на общей территории на протяжении многих поколений.

5. Понятие природной среды

Природная среда – все тела, явления, среди которых существуют организмы и с которыми организмы имеют прямые или опосредованные взаимосвязи. Совокупность всех условий, которые действуют на организмы, вызывают ответную реакцию, обеспечивают их существование, обмен веществ и поток энергии. Природная среда состоит из живой, или биотической, и неживой, или абиотической, компоненты.

Абиотическая среда – это все тела и явления неживой природы, которые создают условия проживания растительных и животных организмов, оказывая на них прямое или косвенное влияние. К абиотической среде можно отнести материнскую породу грунтов, их химический состав и влажность, солнечный свет, воду, воздух, естественный радиоактивный фон и др.

Биотическая среда – совокупность живых организмов, которые своей жизнедеятельностью влияют на другие организмы и окружающую абиотическую составляющую. Одни из них могут быть источником питания для других или средой проживания.

Некоторые исследователи выделяют еще один вид среды — антропогенную среду.

Антропогенная среда это природная среда, которая прямо или косвенно изменена вследствие антропогенной (человеческой) деятельности. К антропогенной среде относятся открытые месторождения полезных ископаемых, магистральные каналы, рекреационные зоны и зоны строительства больших сооружений.

Экофакторы

Экологические факторы — это все составные элементы природной среды, которые влияют на существование и развитие организмов и на которое живые организмы реагируют реакциями приспособления (за пределом реакции приспособления наступает — смерть).

Существует множество различных классификаций экофакторов.

В соответствии одной из них все экологические факторы можно сгруппировать в три крупных категории:

1. Абиотические (факторы неживой природы, такие как: состав воздуха, состав воды, состав грунтов, температура, освещенность влажность, радиация, давление).

Биотические факторы – это совокупность влияний жизнедеятельности одних организмов на другие и на окружающую среду.

3. Антропогенные – формы деятельности человека.

На сегодняшний день существует более 10 групп экофакторов. Всего около 60 штук. Их объединяют в специальную классификацию:

А) по времени (эволюционный, исторический, действующий);

Б) по периодичности (периодический и нет);

В) по происхождению (космический, техногенный, биотический, антропогенный);

Г) по месту возникновения (атмосферные, водные);

Д) по характеру (информационные, физические, химические, климатические);

Е) по объекту влияния (индивидуальные, групповые, видовые, социальные);

Ж) по степени влияния (летальные, ограничивающие, волнующие, мутогенные);

З) по спектру (частные или общего действия, влияния).

Основные законы экологии и их особенности.

1. Закон биогенной миграции атомов : перемещение атомов в биосфере происходит в основном под действием живых организмов.

2. Закон внутреннего динамического равновесия : последствия пр. и изменении элементов природной среды обязательно развиваются побочные реакции, которые стараются нейтрализовать эти изменения.

3. Закон генетического разнообразия : все живое генетически разнообразно и имеет тенденцию к увеличению генетического разнообразия.

4. Закон исторической необратимости : развитие биосферы и человечества в целом не может идти от последующих к начальным фазам, могут повторятся только отдельный элементы социальных отношений (рабство) или типы хозяйственной деятельности.

5. Закон константности (тесно связан со 2м законом): количество живого вещества биосферы остается неизменным за определенный геологический период.

6. Закон кореляции : в организме как целостной системе все его части отвечают одна одной как по строению так и по функциям. Изменение одной части вызывает изменение в других.

7. Закон максимизации энергии : в конкуренции с другими системами сохраняется та, которая наиболее содействует поступлению энергии и информации и использует максимальное их количество эффективнее.

8. Закон максимума биогенной энергии : любая биологическая система, находящаяся в состоянии «стойкого неравновесия», увеличивает развиваясь свое влияние на окружающую среду. Это один из основных законов разработки стратегии природопользования.

9. Закон минимума : стойкость организма определяется наиболее слабым звеном в цепи экологический потребностей. Если количество и качество экологических факторов близки к необходимому для организма минимума он выживет – меньше, погибнет, а экосистема разрушится.

ПОСМОТРЕТЬ ЕЩЕ:

С учетом накопленных знаний о природной среде современные ученые-экологи установили общие закономерности и принципы взаимодействия общества с природной средой, которые назвали законами экологии .

Остановимся на законах экологии Б.Коммонера и Н.Ф.Реймерса.

Б.Коммонер в 1974 г. сформулировал в виде афоризмов четыре основные закона экологии и назвал их «замыкающийся круг».

К этим законам относятся:

1) Все связано со всем(закон о всеобщей связи вещей и явлений в природе).

Биосфера Земли является равновесной экосистемой, в которой все отдельные звенья взаимосвязаны и дополняют друг друга, нарушение какого-либо звена влечет изменения в других звеньях. Таким образом, этот закон предостерегает человека от необдуманного воздействия на отдельные части экосистем.

2) Все должно куда-то деваться(закон сохранения).

В природе круговорот веществ замкнут, в хозяйственной деятельности человека такая замкнутость отсутствует, что приводит к образованию загрязняющих веществ. И хотя применяются различные технологии очистки загрязняющих веществ и нейтрализации отходов, но все, что остается в золе, шлаках, накапливается на очистных устройствах, в осадках, тоже должно куда-то деваться. То есть любая материя не исчезает, а переходит из одной формы существования в другую, оказывая влияние на состояние окружающей среды.

3) Природа «знает» лучше(закон о главном критерии эволюционного отбора).

Природа «знает» лучше, потому что ее практический опыт несравненно больше практического опыта человека. Значит, человечество должно тщательно изучать естественные экосистемы и сознательно относиться к преобразующей деятельности.

4) Ничто не дается даром(закон о цене развития).

Глобальная экосистема представляет собой единое целое, в рамках которой ничего не может быть выиграно или потеряно. Таким образом, все, что человечество забирает из экосистем для удовлетворения своих нужд, должно быть возвращено или возмещено.

Итак, в «законах» Б.Коммонера обращается внимание на всеобщую связь процессов и явлений в природе.

Кроме законов Б.Коммонера целесообразно изучить социоэкологические законы Н.Ф.Реймерса.

К законам Н.Ф.Реймерса относятся :

1) Закон социально-экологического равновесия, который означает необходимость сохранения равновесия между давлением на среду и восстановлением этой среды.

2) Принцип культурного управления развитием, предполагающий наложение ограничений на экстенсивное развитие, учет экологических ограничений.

3) Правило социально-экологических замещений, которое констатирует необходимость выявления путей замещения человеческих потребностей.

4) Закон социально-экологической необратимости. Этот закон отмечает, что экосистема, потерявшая часть своих элементов, не может вернуться в начальное состояние.

5) Закон ноосферы В.И.Вернадского предполагает неизбежность трансформации биосферы под влиянием мысли и человеческого труда в ноосферу.

Соблюдение этих законов возможно при условии осознания человечеством своей роли в механизме поддержания стабильности биосферы.

Вопросы для самопроверки знаний

1) Назовите цель и задачи изучения курса.

2) Дайте определение понятию природопользование.

3) Какие существуют основные этапы в истории возникновения и развития экологии?

4) Что такое экология?

5) Назовите виды экологических факторов.

6) Дайте определение понятию популяция.

7) В чем отличие и сходство биогеоценоза и экосистемы?

8) Поясните понятие и состав биосферы, согласно учению В.И.Вернадского.

9) Какие круговороты веществ имеют место в биосфере?

10) В чем суть концепции ноосферы?

11) Назовите основные законы экологии.

Дата публикования: 2014-11-29; Прочитано: 3595 | Нарушение авторского права страницы

studopedia.org — Студопедия.Орг — 2014-2018 год.(0.001 с)…

Основные экологические законы

Рассмотрим главнейшие, экологические законы, они приведены в алфавитном порядке.

1) Закон биогенной миграции атомов (или закон Вернадского): миграция химических элементов на земной поверхности и в биосфере в целом осуществляется под превосходящим влиянием живого вещества, организмов.

Этот закон имеет важное практическое и теоретическое значение. Понимание всех химических процессов, которые происходят в геосферах, невозможно без учета действия биогенных факторов, в частности - эволюционных. В наше время люди влияют на состояние биосферы, изменяя ее физический и химический состав, условия сбалансированной веками биогенной миграции атомов.

2) Закон внутреннего динамического равновесия: вещество, энергия, информация и динамические качества отдельных естественных систем и их иерархии очень тесно связанные между собою, так что любое изменение одного из показателей неминуемое приводит к функционально-структурным изменениям других, но при этом сохраняются общие качества системы - энергетические, информационные и динамические.

Закон внутреннего динамического равновесия - один из главнейших в природопользовании. Он помогает понять, что в случае незначительных вмешательств в естественную среду ее экосистемы способны саморегулироваться и восстанавливаться, но если эти вмешательства превышают определенные границы (которые человеку следует хорошо знать) и уже не могут «угаснуть» в цепи иерархии экосистем (охватывают целые речные системы, ландшафты), они приводят к значительным нарушениям энерго- и биобаланса на значительных территориях и в всей биосфере.

3) Закон константности (сформулированный В. Вернадским) : количество живого вещества биосферы (за определенное геологическое время) есть величина постоянная. Этот закон тесно связан с законом внутреннего динамического равновесия. По закону константности любое изменение количества живого вещества в одном из регионов биосферы неминуемое приводит к такой же по объему изменения вещества в другом регионе, только с обратным знаком.

Следствием этого закона есть правило обязательного заполнения экологических ниш.

4) Закон минимума (сформулированный Ю. Либихом): стойкость организма определяется самым слабым звеном в цепи ее экологических потребностей. Если количество и качество экологических факторов близкие к необходимому организму минимума, он выживает, если меньшие за этот минимум, организм гибнет, экосистема разрушается.

Поэтому во время прогнозирования экологических условий или выполнение экспертиз очень важно определить слабое звено в жизни организмов.

5) Закон ограниченности естественных ресурсов: все естественные ресурсы в условиях Земли исчерпаемые. Планета есть естественно ограниченным телом, и на ней не могут существовать бесконечные составные части.

6) Закон пирамиды энергий (сформулированный Р. Линдеманом): с одного трофического уровня экологической пирамиды на другого переходит в среднем не более 10 % энергии.

По этому закону можно выполнять расчеты земельных площадей, лесных угодий с целью обеспечения население продовольствием и другими ресурсами.

7) Закон равнозначности условий жизни: все естественные условия среды, необходимые для жизни, играют равнозначные роли. Из него вытекает другой закон — совокупного действия экологических факторов. Этот закон часто игнорируется, хотя имеет большое значение.

8) Закон развития окружающей среды: любая естественная система развивается лишь за счет использования материально-энергетических и информационных возможностей окружающей среды. Абсолютно изолированное саморазвитие невозможно - это вывод из законов термодинамики.

Очень важными являются следствия закона.

1. Абсолютно безотходное производство невозможное.

2. Любая более высокоорганизованная биотическая система в своем развитии есть потенциальной угрозой для менее организованных систем. Поэтому в биосфере Земли невозможно повторное зарождение жизни - оно будет уничтожено уже существующими организмами

3. Биосфера Земли, как система, развивается за счет внутренних и космических ресурсов.

9) Закон толерантности (закон Шелфорда): лимитирующим фактором процветания организма может быть как минимум, так и максимум экологического влияния, диапазон между которыми определяет степень выносливости (толерантности) организма к данному фактору. Соответственно закону любой излишек вещества или энергии в экосистеме становится его врагом, загрязнителем.

10) Научной общественности широко известны также четыре закона экологии американского ученого Б.

Основные законы экологии

Коммонера:

1)все связанное со всем;

2)все должно куда-то деваться;

3)природа «знает» лучше;

4) ничто не проходится напрасно (за все надо платить).

Таким образом, круг задач современной экологии очень широкий и охватывает практически все вопросы, которые затрагивают взаимоотношения человеческого общества и естественной среды, а также проблемы гармонизации этих отношений. Познание законов гармонизации, красоты и рациональност природы поможет человечеству найти верные пути выхода из экологического кризиса. Изменяя и в дальнейшем естественные условия (общество не может жить иначе), люди будут вынуждены делать это обдуманно, взвешенно, предусматривая далекую перспективу и опираясь на знание основных экологических законов.

Поиск Лекций

Закон единства «организм-среда»

Обитание жизни развивается в результате постоянного обмена веществ информацией на базе потока энергии в совокупном единстве среды и населяющих её организмов.

40. Закон минимума (Либиха): Веществом, присутствующим в минимуме, управляет урожай, определяется его величина, и стабильность во времени.

41. Законы Коммонера:

  • «Все связано со всем»;
  • «Все должно куда-то деваться»;
  • «Ничто не дается даром»;
  • «Природа знает лучше».

42. Закон максимума (Шелфорда): Процветание организма ограничено зонами максимума и минимума определенных экологических факторов; между ними располагается зона экологического оптимума, в пределах которого организм нормально реагирует на условия среды.

43. Деградация биосферы — это разрушение или существенное нарушение экологических связей в природе, сопровождающееся ухудшением условий жизни человека, вызванное стихийными бедствиями или хозяйственной деятельностью самого человека, производимой без учета знания законов развития природы.

44.Этапы деградации биосферы:

  • использование огня (ранний палеолит);
  • развитие сельского хозяйства;
  • промышленная революция.
  • экологический кризис.

45. Источники деградации биосферы могут быть естественными (природными) и искусственными (антропогенными). Естественные загрязнение ОС вызвано природными процессами (пыльные бури, вулканизм, лесные пожары и т.д.). Искусственные загрязнение связи с выбросами в ОС различных загрязняющих веществ в процессе деятельности человека (сельское хозяйство, транспорт, промышленность и т.д.)

46. Последствия деградации биосферы:

Заметное уменьшение биоразнообразия экосистемы, разрушение и уничтожение ещё сохранившихся участков дикорастущей растительности, варварское уничтожение лесов и болот, сокращение численности диких животных, исчезновение многих представителей флоры и фауны. В результате всех этих действий к середине ХХ столетия антропогенное воздействие на биосферу по своему значению вошло на один уровень с естественным, приняв планетарные масштабы. Таким образом, человечество превратилось в один из основных геоэкологических судьбоносных факторов эволюции планеты.

47. Загрязнение – любое внесения в ту или иную экологическую систему (биоценоз) не свойственных ей живых или неживых компонентов, любых изменений, прерывающих или нарушающих процессы круговорота и обмена веществ, потоки энергии, следствием которых является снижения продуктивности или разрушения данной системы.

48.Основные загрязняющие вещества:

  • диоксид углерода (СО2);
  • оксид углерода (СО);
  • диоксид серы (SO2);
  • оксиды азота (NO, NO2, N2O);
  • тяжелые металлы и в первую очередь ртуть, свинец и кадмий;
  • канцерогенные вещества, в частности, бензапирен;
  • пестициды;
  • фосфаты;
  • радионуклиды и другие радиоактивные вещества;
  • диоксиды (хлоруглеводороды);
  • твердые примеси (аэрозоли): пыль, сажа, дым;
  • нефть и нефтепродукты.

49. По агрегатному состоянию различают 3 вида загрязнителей: твердые, жидкие и газообразные.

50. По происхождению природы, агрегатного состояния, масштабу распространения, вызванным последствиям, степени токсичности

51. По природе загрязняющие вещества классифицируют на такие группы: химические, физические, биологические,эстетические.

52. Основные загрязнители атмосферы:

— оксид углерода

— диоксид серы

— оксиды азота и др.

53. Источники загрязнения атмосферы:

— крупные промышленные предприятия и др.

54. Локальные последствия – последствия, которые проявляются на отдельно взятой небольшой территории, возникшие в результате загрязнения окружающей среды. Пример: случай в деревне Миномата в Японии.

55. Глобальные последствия – проявляются в глобальном изменении климата, возростанию количества природных катаклизмов и необратимых процессах, которые происходят в биосфере Земли.

Основные экологические законы

Основные загрязнители гидросферы: бензол, керосин, нитроэтан, изопропиланин и др.

57. Источники загрязнения гидросферы: ГЭС, коммунальные предприятия, промышленные заводы, порты, стоянки судов и др.

58. Последствиями загрязнения гидросферы есть сокращение количества организмов, обитающих в водной среде, постепенное становление водных ресурсов непридатными для людских потребностей, очень частыми стают случаи, когда вода есть переносчиком разных инфекций и заболеваний.

59. Основными загрязнителями литосферы есть химические вещества, попадающие туда от сбросов крупных промышленных предприятий, сельхоз удобрения, а также другие вещества.

60. Источники загрязнения литосферы: крупные промышленные центры, сельское хозяйство, АЭС.

61. Качество среды – соответствие природной среды людским потребностям.

62. Нормирование качества природной среды предусматривает собой установленные системы нормативов предельно допустимого воздействия на окружающую среду.

63. Экологическая безопасность представляет собой совокупность действий состояний и процессов, прямо или косвенно наносимым природной среде и человеку.

64. Основные экологические нормативы: ПДК, ПДВ (ПДС), ПДН.

ПДК – такое количество загрязнителя в почве, воздухе, воде, отнесенное к массе или обьему данного субстрата, которое при постоянном или временном воздействии на человека или на окружающую среду не вызывает неблагопариятных последствий ни у среды, ни у человека, ни у его потомства. ПДК бывает среднесуточное (такая концентрация вредного вещества, которая не должна оказывать на человека прямого или косвенного вредного воздействия при неопределенно долгом многолетнем воздействии) и максимальное разовое (такая концентрация вредного вещества, которая не должна вызывать при вдыхании в течении 30 минут рефлекторных реакций организма человека).

ПДК в воде – такая концентрация загрязнителей в воде, при которой она становится непригодной для одного или нескольких видов водопользования.

ПДК для почвы – такая концентрация загрязняющих веществ, которая не вызывает прямого или косвенного влияния и не нарушает самоочищающую способность почвы.

ПДУ – такое воздействие энергетического загрязнения, которое не оказывает воздействия ни на человека, ни на окружающую среду.

ПДВ(ПДС) – такое максимальное количество заграязняющих веществ, которое в единицу времени может быть выброшено(сброшено) в атмосферу(гидросферу), не вызывая при этом превышения в среде допустимых концентраций и неблагоприятных экологических последствий.

ПДН- нагрузка, учитывающая влияние вредных факторов не на отдельный организм или вид, а на биоценоз или экосистему в целом.

65. При наличии в среде нескольких веществ выполняется эффект суммации:

66. Ассимиляционная емкость экосистемы – максимальная динамическая вместимость такого количества загрязняющего вещества (в пересчете на всю систему или единицу ее обьема), которая может быть за единицу времени накоплена, разрушена, трансформирована путем биологических или химических превращений и выведена за счет процессов седиментации, диффузии или любого переноса за пределы экосистемы без нарушения ее норм функционирования.

67. Биоиндикация – использование особо чувствительных организмов для обнаружения загрязнителей или других реагентов у воде.

Биотестирование – использавание тест-обьектов для получения интегральных оценок загрязненности водной среды.

68. Мониторинг – система наблюдений, оценки и прогнозирование состояния окружающей природной среды, позволяющая выделить изменения состояния биосферы под воздействием деятельности человека..

69. Основными задачами мониторинга являются:

1) наблюдение за источниками антропогенного воздействия;

2) наблюдения за факторами антропогенного воздействия;

3) наблюдения за состоянием природной среды и происходящими в ней процессами под влиянием факторов антропогенных воздействия;

4) оценка физического состояния природной среды;

5) прогноз изменения состояния окружающей природной среды под влиянием факторов антропогенного воздействия и оценка прогнозируемого состояния природной среды.

70. Практические направления мониторинга:

— наблюдение за состоянием окружающей среды и факторами, воздействующими на неё;

— оценка фактического состояния окружающей среды и уровня её загрязнения;

— прогноз состояния окружающей среды в результате возможных загрязнений и оценка этого состояния.

71. Санитарно-гигиенический мониторинг – проводит наблюдение по состоянию среды с точки зрения его влияния на здоровье отдельного человека и населения в целом.

Геоэкологический мониторинг – наблюдения ведутся за геосистемами, за превращением природных систем в природнотехнические.

72. Биологический мониторинг – изучает состояние биотической части биосферы.

73. Биосферный мониторинг – обеспечивает наблюдение и контроль в глобальном масштабе.

74. Обьекты мониторинга: атмосферный, воздушный, почвенный, климатический, мониторинг растительности, животного мира, здоровье

75. Мониторинг по масштабам:

1) пространственный;

2) временный.

76. Мониторинг по характеру обобщения информации:

1) глобальный – слежение за общими мировыми процессами и явлениями биосферы земли, включая все ее экологические компоненты и предупреждение о возникающих экстремальных ситуациях;

2) базовый (фоновый) – слежение за общебиосферными, в основном природными явлениями без наложения на них региональных антропогенных влияний;

3) национальный – мониторинг масштаба страны;

4) региональный – слежение за процессами и явлениями в пределах региона, где эти процессы и явления могут отличаться по природному характеру и по антропогенному воздействию от базового фона характерного для всей биосферы;

5) локальный – мониторинг воздействия конкретного антропологического источника;

6) импактный – мониторинг региональных и локальных антропогенных воздействий в особо опасных зонах и местах.

77 — 80. В зависимости от методов наблюдения мониторинг бывает:

— химический — система наблюдений за химическим составом биосферы;

— физический — система наблюдений за влиянием физических процессов и явлений на окружающую среду;

-биологический — мониторинг, осуществляемый с помощью биоиндикаторов

— экобиохимический (анализ химсостояния с биологической точки зрения);

— дистанционный ;

— комплексно экологический – организация систем наблюдения за состоянием объектов ок.пр.ср. для оценки их фактического уровня загрязнения и предупреждения о создающихся критических ситуации, вредных для здоровья людей и других живых организмов.

Система комплексного экологического мониторинга предусматривает:

1) оценить показатели состояния и функциональной целостности экосистем и среды обитания человека (т. е. провести оценку соблюдения экологических нормативов);

2) выявить причины изменения этих показателей и оценить последствия таких изменений, а также определить корректирующие меры в тех случаях, когда целевые показатели экологических условий не достигаются (т. е. провести диагностику состояния экосистем и среды обитания);

3) создать предпосылки для определения мер по исправлению возникающих негативных ситуаций до того, как будет нанесен ущерб, т. е. обеспечить заблаговременное предупреждение негативных ситуаций.

©2015-2018 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Нарушение авторских прав и Нарушение персональных данных

С этой точки зрения два общих явления в ходе жизни на земной поверхности сразу захватывают наше внимание.

Во-первых, существование резкой границы между живым и косным веществом. Во-вторых, совершенно особый характер энергии, связанной с проявлением жизни. Эта энергия кажется

нам отличной от энергии почти всех других природных процессов. Оставаясь в области эмпирических фактов, мы констатируем, что нигде и ни в какой момент на нашей планете не создавалась новая жизнь материально не связанная со старой. В геохимических явлениях, изучаемых нами она всегда существовала как жизнь материально не связанная со старой. В геохимическихявлениях, изучаемых нами, она всегда существовала как таковая. Если были отдаленные космические периоды истории Земли, которые не оставили следа в геологической истории, «камнях» планеты, - они не подлежат научному изучению геологии и геохимии. Мы должны всегда различать положительныенаучные факты от неизбежно гипотетических, космогоническихпредположений, даже если эти последние излагаются в научной форме. Я не сомневаюсь в их полезности для успехов науки, но они по точности и по значению совершенно несоизмеримы с фактами наблюдения и опытов. Нельзя опираться на космогонические выводы, когда нет соответствующих точных атипических фактов, подтверждающих без всяких сомнении космогонические выводы или их вызывающих. Я не буду здесь касаться вопроса о вечности или начале жизни вообще, мне пришлось коснуться истории и положения этого вопроса в другом месте и я не имею оснований изменять мою точку зрения. Не буду касаться того, что я сделал в другом месте, и условий, необходимых для появления жизни на нашей планете. Но одну основную оговорку необходимо сделать: с геохимической и геологической точек зрения вопрос стоит не о синтезе отдельного организма, а о возникновении биосферы. Условия этой возможности должны быть для нас ясны. Проблема абиогенеза, создания homunculus’a не может интересовать геохимика, может интересовать и иметь значение только проблема создания комплекса жизни в биосфере, т. е. создание биосферы. Есть или нет абиогенез в окружающей природе? Был ли он в геологическое время? Для ответа на этот вопрос необходимо точно выявить формупередачи жизни из поколения в поколение, обеспечивающей ее существование в ходе геологического времени (явление, наблюдаемое только в биосфере).

Прошло уже больше 265 лет с той поры, как флорентийский учёный, врач, поэт и натуралист Ф. Реди (1626-1697) первым сказал в XVII в. совершенно новую в истории человечества идею. Несколько десятилетий после него она была обобщена XVIII в другим крупным итальянским натуралистом – А. Валлисньери.

Тема 3. Основные положения экологической теории социального развития

Окен в XIX в, следуя мыслям Валлисньери, высказал эту идею в форме афоризма: «Omnevivum e vivo» («Всё живое из живого»). Это было отрицание самопроизвольного зарождения и абиогенеза и провозглашение непрерывного единства живого вещества в окружающей нас среде - в биосфере - с самого его начала, если таковое было. После работ Л. Пастера было чрезвычайно трудно поколебать этот взгляд на природу, этот эмпирический принцип, который трудно отвергнуть в настоящее время и который опирается на огромное число точных научных фактов; и хотя до сих пор существование абиогенеза пытаются доказать, но тщетно.

Эти многовековые стремления вызываются не эмпирическими фактами, но привычками философской мысли, очень глубокими традициями, на которых основаны представления о мире, связанные с философскими, религиозными и поэтическими, чуждыми науке, воззрениями.

Изучая геохимическую историю углерода, мы не видели в ней следов абиогенеза; нигде не существует органических соединений, независимых от живого вещества, которые свидетельствовали бы о существовании такого процесса в течение геологического времени.

Геохимия доказывает тесную связь живого вещества с историей всех химических элементов, она нам являет его как часть организованности земной коры, совершенно отличную от косной материи. Нет в ее данных места для абиогенеза, для произвольного самозарождения и нет признаков его существования.

Мы должны сохранить эмпирический принцип Реди и признать за научный факт, до сих пор не поколебленный, что во все течение геологического времени все время существовала непроходимая граница между живым (другими словами, между совокупностью всех организмов) и косными веществами, что вся жизнь происходит из живого и что в течение всего этого времени имели место те же явления обмена химическими элементами между этими двумя проявлениями природы, как это и теперь наблюдается.

В рамках этих эмпирических фактов кажется совершенно законной идея вечности жизни, в столь высокой степени заполняющая религиозную и философскую жизнь Азии и в настоящее время начинающая проникать в научные представления и в философские искания Запада.

Живое вещество всегда, в течение всего геологического времени, было и остается неразрывной закономерной составной частью биосферы, источником энергии, ею захватываемой из солнечных излучений, веществом, находящимся в активном состоянии, имеющим основное влияние на ход и направление геохимических процессов химических элементов во всей земной коре.

Обычно косная материя Земли ничего подобного на всем протяжении биллионов лет не представляла и не представляет.

Предыдущая глава::: К содержанию::: Следующая глава

Законы экологии — общие закономерности и принципы взаимодействия человеческого общества с природной средой.

Значение этих законов состоит в регламентации характера и направленности человеческой деятельности в пределах экосистем различного уровня. Среди законов экологии, сформулированных разными авторами, наибольшую известность получили четыре закона-афоризма американского ученого-эколога Барри Коммонера (1974):

  • «все связано со всем» (закон всеобщей связи вещей и явлений в природе);
  • «все должно куда-то деваться» (закон сохранения массы вещества);
  • «ничто не дается даром» (о цене развития);
  • «природа знает лучше» (о главном критерии эволюционного отбора).

Из закона всеобщей связи вещей и явлений в природе («все связано со всем») вытекает несколько следствий:

  • закон больших чисел - совокупное действие большого числа случайных факторов приводит к результату, почти не зависящему от случая, т.е. имеющему системный характер. Так, мириады бактерий в почве, воде, телах живых организмов создают особую, относительно стабильную микробиологическую среду, необходимую для нормального существования всего живого. Или другой пример: случайное поведение большого числа молекул в некотором объеме газа обусловливает вполне определенные значения температуры и давления;
  • принцип Ле Шателье (Брауна) - при внешнем воздействии, выводящем систему из состояния устойчивого равновесия, это равновесие смещается в направлении, при котором эффект внешнего воздействия уменьшается. На биологическом уровне он реализуется в виде способности экосистем к саморегуляции;
  • закон оптимальности — любая система функционирует с наибольшей эффективностью в некоторых характерных для нее пространственно-временных пределах;
  • любые системные изменения в природе оказывают прямое или опосредованное воздействие на человека — от состояния индивидуума до сложных общественных отношений.

Из закона сохранения массы вещества («все должно куда-то деваться») вытекают по меньшей мере два постулата, имеющих практическое значение:

Барри Коммонер писан «...глобальная экосистема представляет собой единое целое, в рамках которого ничего не может быть выиграно или потеряно и которое не может являться объектом всеобщего улучшения; все, что было извлечено из нее человеческим трудом, должно быть возмещено. Платежа по этому векселю нельзя избежать; он может быть только отсрочен. Нынешний кризис окружающей среды говорит о том, что отсрочка очень затянулась».

Принцип «природа знает лучше» определяет прежде всего то, что может и что не должно иметь места в биосфере. Все в природе — от простых молекул до человека — прошло жесточайший конкурс на право существования. В настоящее время планету населяет лишь 1/1000 испытанных эволюцией видов растений и животных. Главный критерий этого эволюционного отбора — вписанность в глобальный биотический круговорот , заполненность всех экологических ниш. У любого вещества, выработанного организмами, должен существовать разлагающий его фермент, и все продукты распада должны вновь вовлекаться в круговорот. С каждым биологическим видом, который нарушал этот закон, эволюция рано или поздно расставалась. Человеческая индустриальная цивилизация грубо нарушает замкнутость биотического круговорота в глобальном масштабе, что не может остаться безнаказанным. В этой критической ситуации должен быть найден компромисс, что под силу только человеку, обладающему разумом и стремлением к этому.

Помимо формулировок Барри Коммонера современные экологи вывели еще один закон экологии - «на всех не хватит» (закон ограниченности ресурсов). Очевидно, что масса питательных веществ для всех форм жизни на Земле конечна и ограничена. Ее не хватает на всех появляющихся в биосфере представителей органического мира, поэтому значительное увеличение численности и массы каких-либо организмов в глобальном масштабе может происходить только за счет уменьшения численности и массы других. На противоречие между скоростью размножения и ограниченностью ресурсов питания применительно к народонаселению планеты впервые обратил внимание английский экономист Т.Р. Мальтус (1798), который именно этим пытался обосновать неизбежность социальной конкуренции. В свою очередь, Ч. Дарвин заимствовал у Мальтуса понятие «борьба за существование» для объяснения механизма естественного отбора в живой природе.

Закон ограниченности ресурсов — источник всех форм конкуренции, соперничества и антагонизма в природе и, к сожалению, в обществе. И сколько бы ни считали классовую борьбу, расизм, межнациональные конфликты чисто социальными явлениями — все они своими корнями уходят во внутривидовую конкуренцию, принимающую иногда гораздо более жестокие формы, чем у животных.

Существенное различие в том, что в природе в результате конкурентной борьбы выживают лучшие, а в человеческом обществе — это отнюдь не так.

Обобщенную классификацию экологических законов представил известный советский ученый Н.Ф. Реймерс. Им даны следующие формулировки:

  • закон социально-экологического равновесия (необходимости сохранения равновесия между давлением на среду и восстановлением этой среды, как природным, так и искусственным);
  • принцип культурного управления развитием (наложение ограничений на экстенсивное развитие, учет экологических ограничений);
  • правило социально-экологического замещения (необходимость выявления путей замещения человеческих потребностей);
  • закон социально-экологической необратимости (невозможность поворота эволюционного движения вспять, от сложных форм к более простым);
  • закон ноосферы Вернадского (неизбежность трансформации биосферы под влиянием мысли и человеческого труда в ноосферу — геосферу, в которой разум становится доминирующим в развитии системы «человек-природа»).

Соблюдение этих законов возможно при условии осознания человечеством своей роли в механизме поддержания стабильности биосферы. Известно, что в процессе эволюции сохраняются только те виды, которые способны обеспечивать устойчивость жизни и окружающей среды. Только человек, используя силу своего разума, может направить дальнейшее развитие биосферы по пути сохранения дикой природы, сохранения цивилизации и человечества, создания более справедливой социальной системы, перехода от философии войны к философии мира и партнерства, любви и уважения к будущим поколениям. Все это составляющие нового биосферного мировоззрения, которое должно стать общечеловеческим.

Законы и принципы экологии

Закон минимума

В 1840 г. Ю. Либих установил, что урожай часто ограничивается не теми питательными веществами, которые требуются в больших количествах, а теми, которых нужно немного, но которых мало и в почве. Сформулированный им закон гласил: «Веществом, находящимся в минимуме, управляется урожай, определяется величина и устойчивость последнего во времени». Впоследствии к питательным веществам добавили ряд других факторов, например температуру. Действие данного закона ограничивают два принципа. Первый закон Либиха строго действует только в условиях стационарного состояния. Более точная формулировка: «при стационарном состоянии лимитирующим будет то вещество, доступные количества которого наиболее близки к необходимому минимуму». Второй принцип касается взаимодействия факторов. Высокая концентрация или доступность некоторого вещества может изменять потребление минимального питательного вещества. Следующий закон сформулирован в самой экологии и обобщает закон минимума.

Закон толерантности

Этот закон формулируется следующим образом: отсутствие или невозможность развития экосистемы определяется не только недостатком, но и избытком любого из факторов (тепло, свет, вода). Следовательно, организмы характеризуются как экологическим минимумом, так и максимумом. Слишком много хорошего тоже плохо. Диапазон между двумя величинами составляет пределы толерантности, в которых организм нормально реагирует на влияние среды. Закон толерантности предложил В. Шелфорд в 1913 г. Можно сформулировать ряд дополняющих его предложений.

  • Организмы могут иметь широкий диапазон толерантности в отношении одного фактора и узкий в отношении другого.
  • Организмы с широким диапазоном толерантности ко всем факторам обычно наиболее широко распространены.
  • Если условия по одному экологическому фактору не оптимальны для вида, то может сузиться диапазон толерантности к другим экологическим факторам.
  • В природе организмы очень часто оказываются в условиях, не соответствующих оптимальному значению того или иного фактора, определенному в лаборатории.
  • Период размножения обычно является критическим; в этот период многие факторы среды часто оказываются лимитирующими.

Живые организмы изменяют условия среды, чтобы ослабить лимитирующее влияние физических факторов. Виды с широким географическим распространением образуют адаптированные к местным условиям популяции, которые называются экотипами. Их оптимумы и пределы толерантности соответствуют местным условиям.

Обобщающая концепция лимитирующих факторов

Наиболее важными факторами на суше являются свет, температура и вода (осадки), а в море — свет, температура и соленость. Эти физические условия существования могут быть лимитирующими и влияющими благоприятно. Все факторы среды зависят друг от друга и действуют согласованно. Из других лимитирующих факторов можно отметить атмосферные газы (углекислый газ, кислород) и биогенные соли. Формулируя «закон минимума», Либих и имел в виду лимитирующее воздействие жизненно важных химических элементов, присутствующих в среде в небольших и непостоянных количествах. Они называются микроэлементами и к ним относятся железо, медь, цинк, бор, кремний, молибден, хлор, ванадий, кобальт, йод, натрий. Многие микроэлементы подобно витаминам действуют как катализаторы. Фосфор, калий, кальций, сера, магний, требующиеся организмам в больших количествах, называются макроэлементами. Важным лимитирующим фактором в современных условиях является загрязнение природной среды. Главный лимитирующий фактор, по Ю. Одуму, - размеры и качество «ойкоса », или нашей «природной обители», а не просто число калорий, которые можно выжать из земли. Ландшафт не только склад запасов, но и дом, в котором мы живем. «Следует стремиться к тому, чтобы сохранить, по меньшей мере, треть всей суши в качестве охраняемого открытого пространства. Это означает, что треть всей нашей среды обитания должны составлять национальные или местные парки, заповедники, зеленые зоны, участки дикой природы и т.п.». Территория, необходимая одному человеку, по разным оценкам колеблется от 1 до 5 га. Вторая из этих цифр превосходит площадь, которая приходится ныне на одного жителя Земли.

Плотность населения приближается к одному человеку на 2 га суши. Пригодны же для сельского хозяйства только 24% суши. Хотя с площади всего лишь 0,12 га можно получить достаточно калорий, чтобы поддержать существование одного человека, для полноценного питания с большим количеством мяса, фруктов и зелени необходимо около 0,6 га на человека. Кроме того, требуется еще около 0,4 га для производства разного рода волокна (бумаги, древесины, хлопка) и еще 0,2 га для дорог, аэропортов, зданий и т.п. Отсюда концепция «золотого миллиарда», в соответствии с которой оптимальным количеством населения является 1 млрд человек, и стало быть, уже сейчас около 5 млрд «лишних людей». Человек впервые за свою историю столкнулся с предельными, а не локальными ограничениями. Преодоление лимитирующих факторов требует огромных затрат вещества и энергии. Для удвоения урожая необходимо десятикратное увеличение количества удобрений, ядохимикатов и мощности (животных или машин). К лимитирующим факторам относится и численность популяции.

Закон конкурентного исключения

Данный закон формулируется следующим образом: два вида, занимающие одну экологическую нишу, не могут сосуществовать в одном месте неограниченно долго.

То, какой вид побеждает, зависит от внешних условий. В сходных условиях победить может каждый. Важным для победы обстоятельством является скорость роста популяции. Неспособность вида к биотической конкуренции ведет к его оттеснению и необходимости приспособления к более трудным условиям и факторам.

Закон конкурентного исключения может работать и в человеческом обществе. Особенность его действия в настоящее время заключается в том, что цивилизации не могут разойтись. Им некуда уйти со своей территории, потому что в биосфере нет свободного места для расселения и нет избытка ресурсов, что приводит к обострению борьбы со всеми вытекающими отсюда последствиями. Можно говорить об экологическом соперничестве между странами и даже экологических войнах или войнах, обусловленных экологическими причинами. В свое время Гитлер оправдывал агрессивную политику нацистской Германии борьбой за жизненное пространство. Ресурсы нефти, угля и т.п. и тогда были важны. Еще больший вес они имеют в XXI в. К тому же добавилась необходимость территорий для захоронения радиоактивных и прочих отходов. Войны — горячие и холодные — приобретают экологическую окраску. Многие события в современной истории, например распад СССР, воспринимаются по-новому, если на них посмотреть с экологических позиций. Одна цивилизация может не только завоевать другую, но использовать ее для корыстных с экологической точки зрения целей. Это и будет экологический колониализм. Так переплетаются политические, социальные и экологические проблемы.

Основной закон экологии

Одним из главных достижений экологии стало открытие, что развиваются не только организмы и виды, но и . Последовательность сообществ, сменяющих друг друга в данном районе, называется сукцессией. Сукцессия происходит в результате изменения физической среды под действием сообщества, т.е. контролируется им.

Высокая продуктивность дает низкую надежность — еще одна формулировка основного закона экологии, из которой вытекает следующее правило: «Оптимальная эффективность всегда меньше максимальной». Разнообразие в соответствии с основным законом экологии непосредственно связано с устойчивостью. Однако пока неизвестно, до какой степени эта связь является причинно-следственной.

Некоторые другие важные для экологии законы и принципы.

Закон эмерджентности : целое всегда имеет особые свойства, отсутствующие у его части.

Закон необходимого разнообразия : система не может состоять из абсолютно идентичных элементов, но может иметь иерархическую организацию и интегративные уровни.

Закон необратимости эволюции : организм (популяция, вид) не может вернуться к прежнему состоянию, осуществленному в ряду его предков.

Закон усложнения организации : историческое развитие живых организмов приводит к усложнению их организации путем дифференциации органов и функций.

Биогенетический закон (Э. Геккель): онтогенез организма есть краткое повторение филогенеза данного вида, т.е. индивид в своем развитии повторяет сокращенно историческое развитие своего вида.

Закон неравномерности развития частей системы : системы одного уровня иерархии развиваются не строго синхронно, в то время как одни достигают более высокой стадии развития, другие остаются в менее развитом состоянии. Этот закон непосредственно связан с законом необходимого разнообразия.

Закон сохранения жизни : жизнь может существовать только в процессе движения через живое тело потока веществ, энергии, информации.

Принцип сохранения упорядоченности (Я. Пригожий): в открытых системах энтропия не возрастает, а уменьшается до тех пор, пока не достигается минимальная постоянная величина, всегда больше нуля.

Принцип Ле Шателье-Брауна : при внешнем воздействии, выводящем систему из состояния устойчивого равновесия, это равновесие смещается в том направлении, при котором эффект внешнего воздействия ослабляется.

Принцип экономии энергии (Л. Онсагер): при вероятности развития процесса в некотором множестве направлений, допускаемых началами термодинамики, реализуется то, которое обеспечивает минимум рассеивания энергии.

Закон максимизации энергии и информации : наилучшими шансами на самосохранение обладает система, в наибольшей степени способствующая поступлению, выработке и эффективному использованию энергии и информации; максимальное поступление вещества не гарантирует системе успеха в конкурентной борьбе.

Закон развития системы за счет окружающей среды : любая система может развиваться только за счет использования материально-энергетических и информационных возможностей окружающей ее среды; абсолютно изолированное саморазвитие невозможно.

Правило Шредингера «о питании» организма отрицательной энтропией: упорядоченность организма выше окружающей среды, и организм отдает в эту среду больше неупорядоченности, чем получает. Это правило соотносится с принципом сохранения упорядоченности Пригожина.

Правило ускорения эволюции : с ростом сложности организации биосистем продолжительность существования вида в среднем сокращается, а темпы эволюции возрастают. Средняя продолжительность существования вида птиц — 2 млн лет, вида млекопитающих — 800 тыс. лет. Число вымерших видов птиц и млекопитающих в сравнении со всем их числом велико.

Закон относительной независимости адаптации : высокая адаптивность к одному из экологических факторов не дает такой же степени приспособления к другим условиям жизни (наоборот, она может ограничивать эти возможности в силу физиолого-морфологических особенностей организмов).

Принцип минимального размера популяций : существует минимальный размер популяции, ниже которого ее численность не может опускаться.

Правило представительства рода одним видом : в однородных условиях и на ограниченной территории таксономический род, как правило, представлен только одним видом. По-видимому, это связано с близостью экологических ниш видов одного рода.

Закон обеднения живого вещества в островных его сгущениях (Г.Ф. Хильми): «Индивидуальная система, работающая в среде с уровнем организации более низким, чем уровень самой системы, обречена: постепенно теряя структуру, система через некоторое время растворится в окружающей среде». Из этого следует важный вывод для человеческой природоохранной деятельности: искусственное сохранение экосистем малого размера (на ограниченной территории, например, заповедника) ведет к их постепенной деструкции и не обеспечивает сохранения видов и сообществ.

Закон пирамиды энергий (Р. Линдеман): с одного трофического уровня экологической пирамиды переходит на другой, более высокий уровень в среднем около 10% поступившей на предыдущий уровень энергии. Обратный поток с более высоких на более низкие уровни намного слабее — не более 0,5-0,25%, и потому говорить о круговороте энергии в биоценозе не приходится.

Правило обязательности заполнения экологических ниш : пустующая экологическая ниша всегда и обязательно бывает естественно заполнена («природа не терпит пустоты»).

Принцип формирования экосистемы : длительное существование организмов возможно лишь в рамках экологических систем, где их компоненты и элементы дополняют друг друга и взаимно приспособлены. Из этих экологических законов и принципов следуют некоторые выводы, справедливые для системы «человек — природная среда». Они относятся к типу закона ограничения разнообразия, т.е. накладывают ограничения на деятельность человека по преобразованию природы.

Закон бумеранга : все, что извлечено из биосферы человеческим трудом, должно быть возвращено ей.

Закон незаменимости биосферы : биосферу нельзя заменить искусственной средой, как, скажем, нельзя создать новые виды жизни. Человек не может построить вечный двигатель, в то время как биосфера и есть практически «вечный» двигатель.

Закон шагреневой кожи : глобальный исходный природно-ресурсный потенциал в ходе исторического развития непрерывно истощается. Это следует из того, что никаких принципиально новых ресурсов, которые могли бы появиться, в настоящее время нет. Для жизни каждого человека в год необходимо 200 т твердых веществ, которые он с помощью 800 т воды и в среднем 1000 Вт энергии превращает в полезный для себя продукт. Все это человек берет из уже имеющегося в природе.

Принцип удаленности события : потомки что-нибудь придумают для предотвращения возможных отрицательных последствий. Вопрос о том, насколько законы экологии можно переносить на взаимоотношения человека с окружающей средой, остается открытым, так как человек отличается от всех других видов. Например, у большинства видов скорость роста популяции уменьшается с увеличением ее плотности; у человека, наоборот, рост населения в этом случае ускоряется. Некоторые регулирующие механизмы природы отсутствуют у человека, и это может служить дополнительным поводом для технологического оптимизма у одних, а для экологических пессимистов свидетельствовать об опасности такой катастрофы, которая невозможна ни для одного иного вида.

Каждый живой организм, несмотря на многообразие своих форм и приспособлений к условиям внешней среды, в своем развитии подчинен строго определенным законам.

1) Закон исторического развития . Все ныне живущие организма, независимо от их уровня организации, прошли длительный путь исторического развития (филогенез ). Этот закон, сформулированный Ч.Дарвиным, нашел свое развитие в трудах А.Н.Северцева и И.И.Шмальгаузена.

Жизнь на Земле зародилась около 4-5 млрд лет назад. Вначале на Земле существовали простейшие одноклеточные организмы, потом многоклеточные, появились губки, кишечнополостные, немертины, кольчатые черви, моллюски, членистоногие, иглокожие, хордовые. Именно хордовые животные дали начало позвоночным, к которым относятся круглоротые, рыбы, амфибии, рептилии, млекопитающие и птицы. Таким образом, наши домашние животные в историческом плане прошли очень сложный путь развития и этот путь называется филогенезом.

Млекопитающие

Простейшие Хордовые Рыбы Амфибии Рептилии

Птицы

Итак, филогенез (phylo-род, genesis-развитие)– это историческое развитие определенного вида животного от низших форм к высшим . Советский ученый И.И.Шмальгаузен сформулировал следующие принципы филогенеза:

а) В процессе развития организма постоянно идет дифференциация клеток и тканей с одновременной их интеграцией . Дифференциация – это разделение между клетками функций, одни участвуют в переваривании пищи, другие, как, например, эритроциты в переносе кислорода. Интеграция- это процесс укрепления между клетками, тканями взаимосвязей, которые обеспечивают организму целостность.

б) Каждый орган имеет несколько функций, но одна из них является главной. Остальные функции являются как бы второстепенными, запасными, но благодаря им орган имеет возможность преобразоваться. Так, например, поджелудочная железа имеет несколько функций, но главная это выделение панкреатического сока для переваривания пищи.

в) При изменении условий жизни может произойти смена главной функции на второстепенную и наоборот . Так, например, печень у зародыша вначале выполняет кроветворную функцию, а после рождения является пищеварительной железой.

г) В организме всегда наблюдаются два противоположных процесса: прогрессивное развитие и регрессивное развитие . Регрессивное развитие еще называют редукцией . Органы, которые утрачивают свои функции, как правило, подвергаются редукции, т.е. постепенному исчезновению. Иногда они сохраняются в виде рудимента (при сохранении второстепенной функции)- рудимент ключицы у собак и кошек.

д) Все изменения в организме происходят коррелятивно, т.е. изменения в одних органах непременно ведут к изменениям в других органах .

2) Закон единства организма и среды . Организм без внешней среды, поддерживающей его существование, невозможен. Этот закон, сформулированный И.М.Сеченовым, нашел свое развитие в трудах И.П.Павлова, А.Н..Северцева. Согласно А.Н.Северцеву биологический прогресс у животных в окружающей среде характеризуется увеличением числа особей, расширением ареала обитания и разделением на подчиненные систематические группы. Он достигается 4 путями:

а) путем ароморфоза, т.е. морфофизиологического прогресса, в результате которого усложняется организация животного и происходит общий подъем энергии жизнедеятельности (ракообразные, паукообразные, насекомые, позвоночные);

б) путем идиоадаптации , т.е. частных (полезных) приспособлений, но при этом сама организация животного не усложняется (простейшие, губки, кишечнополостные, иглокожие);

в) путем ценогенеза, т.е. эмбриональных приспособлений, которые развиваются только у зародышей, а у взрослых исчезают (акулы, ящерицы, гаттерии);

3) Закон целостности и неделимости организма . Этот закон выражается в том, что каждый организм является единым целым, в котором все органы и ткани находятся в тесной взаимосвязи. Этот закон, сформулированный еще в 13 веке, нашел свое развитие в трудах И.М.Сеченова, И.П.Павлова.

4) Закон единства формы и функции . Форма и функция органа образуют единое целое. Этот закон, сформулированный А.Дорном, нашел свое развитие в трудах Н.Клейнберга, П.Ф.Лесгафта.

5) Закон наследственности и изменчивости. В ходе возникновения и развития жизни на Земле наследственность играла важную роль, обеспечивая закрепление достигнутых эволюционных преобразований в генотипе. Она неразрывно связана с изменчивостью. Благодаря наследственности и изменчивости стало возможным существование разнообразных групп животных.

6) Закон гомологичных рядов гласит о том, что чем ближе генетические виды, тем больше они имеют сходных морфологических и физиологических признаков . Этот закон, сформулированный И.Гете, Ж.Кювье, Э.Геккелем, нашел свое развитие в трудах Н.И.Вавилова.

7) Закон экономии материала и места . Согласно этому закону каждый орган и каждая система построены так, чтобы при минимальной затрате строительного материала он могли бы выполнять максимальную работу (П.Ф.Легавт). Подтверждение этого закона можно видеть в строении центральной нервной системы, сердца, почек, печени.

8) Основной биогенетический закон (Бэра-Геккеля) .

Анатомия изучает организм в течение всей жизни: от момента его возникновения до смерти, и этот путь называется онтогенезом. Итак, онтогенез (onto-особь, genesis-развитие)– это индивидуальное развитие животного. Онтогенез делится на два этапа: пренатальный (который происходит в организме матери от момента оплодотворения и до рождения) и постнатальный (который происходит во внешней среде после рождения и до смерти).

Пренатальный этап включает в себя три периода: зародышевый, предплодный и пдодный. А постнатальный этап шесть: неонатальный период; молочный период; ювенальный период; период полового созревания; период морфофункциональной зрелости и геронтологический период. Каждый из этих этапов характеризуется определенными морфофункциональными особенностями.

Исследуя развитие животных, особенно в пренатальном онтогенезе, К. Бэр и Э.Геккель установили, что «онтогенез вкратце повторяет филогенез ». Это положение получило название основного биогенетического закона и говорит о том, животные в процессе индивидуального развития последовательно проходят стадии, которые прошли их предки в ходе исторического развития. Советский ученый А.Н.Северцев дополнил этот закон словами: «…но и онтогенез является базой для филогенеза».

Общие принципы строения тела животного.

Для всех домашних животных характерны общие принципы построения тела, а именно:

1. Биполярность (одноосность)- это наличие двух полюсов тела: головного (краниального) и хвостового (каудального).

2. Билатеральность (двустороняяя симметрия) выражается в сходстве по строению правой и левой половин тела, поэтому большинство органов парные (глаза, уши, легкие, почки, грудные и тазовые конечности…).

3. Сегментарность (метамерия) – близлежащие участки тела (сегменты) близки по строению. У млекопитающих сегментарность четко выражена в осевом отделе скелета (позвоночный столб).

4. Закон трубкообразного построения. Все системы организма (нервная, пищеварительная, дыхательная, мочевыделительная, половая…) развиваются в виде трубок.

5. Большинство непарных органов (пищевод, трахея, сердце, печень, желудок…) располагаются вдоль основной оси тела.

Лекция №2.

Опорно-двигательный аппарат. Скелет: определение, функции и его

фило-онтогенез. Строение кости как органа. Классификация костей.

Опорно-двигательный аппарат обеспечивает передвижение и сохранение положения тела животного в пространстве, образует внешнюю форму тела и участвует в обменных процессах. На его долю приходится около 60% от массы тела взрослого животного.

Условно опорно-двигательный аппарат разделяют на пассивную и активную части. К пассивной части относят кости и их соединения, от которых зависит характер подвижности костных рычагов и звеньев тела животного (15%). Активную часть составляют скелетные мышцы и их вспомогательные присособления, благодаря сокращениям которых, приводятся в движение кости скелета (45%). Как активная, так и пассивная части имеют общее происхождение (мезодерма) и находятся в тесной взаимосвязи.

Функции аппарата движения :

1) Двигательная активность является проявлением жизнедеятельности организма, именно она отличает животные организмы от растительных и обуславливает возникновение самых разнообразных способов передвижения (ходьба, бег, лазанье, плавание, полет).

2) Опорно-двигательный аппарат образует форму тела – экстерьер животного, так как его формирование происходило под влиянием гравитационного поля Земли, то его величина и форма у позвоночных животных отличаются значительным разнообразием, что объясняется разными условиями их обитания (наземное, наземно-древесное, воздушное, водное).

3) Кроме этого, аппарат движения обеспечивает ряд жизненно-важных функций организма: поиск и захват пищи; нападение и активную защиту; осуществляет дыхательную функцию легких (респираторную моторику); помогает сердцу при продвижении крови и лимфы в сосудах («периферическое сердце»).

4) У теплокровных животных (птиц и млекопитающих) аппарат движения обеспечивает сохранение постоянной температуры тела;

Функции аппарата движения обеспечиваются нервной и сердечно-сосудистой системами , органами дыхания, пищеварения и мочеотделения, кожным покровом, железами внутренней секреции. Так как развитие аппарата движения неразрывно связано с развитием нервной системы, то при нарушении этих связей происходит сначала парез , а затем и паралич аппарата движения (животное не может двигаться). При снижении физических нагрузок происходит нарушение обменных процессов и атрофия мышечной и костной тканей.

Органы опорно-двигательного аппарата обладают свойствами упругих деформаций, при движении в них возникает механическая энергия в виде упругих деформаций, без которой не могут осуществляться нормальное кровообращение и импульсация головного и спинного мозга. Энергия упругих деформаций в костях преобразуется в пъезоэлектрическую, а в мышцах – в тепловую. Высвобождаемая энергия во время движения, вытесняет кровь из сосудов и вызывает раздражение рецепторного аппарата, от которого нервные импульсы поступают в центральную нервную систему. Таким образом, работа аппарата движения тесно связана и не может осуществляться без нервной системы, а сосудистая система в свою очередь не может нормально функционировать без аппарата движения.

С К Е Л Е Т

Основу пассивной части аппарата движения составляет скелет. Скелет (греч. sceletos-высохший, высушенный; лат. Skeleton) – это соединенные в определенном порядке кости, которые образуют твердый каркас (остов) тела животного. Так как по-гречески кость «os», то наука о скелете называется остеологией.

В состав скелета входит около 200-300 костей (Лошадь, к.р.с. –207-214; свинья, собака, кошка –271-288), которые соединены между собой при помощи соединительной, хрящевой или костной ткани. Масса скелета составляет у взрослого животного от 6% (свинья) до 15% (лошадь, к.р.с.).

Все функции скелета можно разделить на две большие группы: механические и биологические. К механическим функциям относятся: защитная, опорная, локомоторная, рессорная, антигравитационная, а к биологическим – обмен веществ и кроветворение (гемоцитопоэз).

1) Защитная функция состоит в том, что скелет образует стенки полостей тела, в которых расположены жизненно важные органы. Так, например, в полости черепа находится головной мозг, в грудной клетке – сердце и легкие, в полости таза – мочеполовые органы.

2) Опорная функция заключается в том, что скелет представляет собой опору для мышц и внутренних органов, которые прикрепляясь к костям, удерживаются в своем положении.

3) Локомоторная функция скелета проявляется в том, что кости – это рычаги, которые приводятся в движение мышцами и обеспечивают передвижение животного.

4) Рессорная функция обусловлена наличие в скелете образований, смягчающих толчки и сотрясения (хрящевые прокладки и т.п.).

5) Антигравитационная функция проявляется в том, что скелет создает опору для устойчивости тела, приподнимающегося над землей.

6) Участие в обмене веществ, особенно в минеральном, так как кости - это депо минеральных солей фосфора, кальция, магния, натрия, бария, железа, меди и других элементов.

7) Буферная функция. Скелет выполняет роль буфера, который стабилизирует и поддерживает постоянный ионный состав внутренней среды организма (гомеостаз).

8) Участие в гемоцитопоэзе. Расположенный в костномозговых полостях красный костный мозг вырабатывает клетки крови. Масса костного мозга по отношению к массе костей у взрослых животных составляет примерно 40-45%.

ДЕЛЕНИЕ СКЕЛЕТА

Скелет – это каркас тела животного. Его принято делить на основной и периферический.

К осевому скелету относят скелет головы (череп- cranium), скелет шеи, туловища и хвоста. Самое сложное строение имеет череп, так как в нем располагаются головной мозг, органы зрения, обоняния, равновесия и слуха, ротовая и носовая полости. Основной частью скелета шеи, туловища и хвоста является позвоночный столб (columna vertebralis).

Позвоночный столб разделяют на 5 отделов: шейный, грудной, поясничный, крестцовый и хвостовой. Шейный отдел состоит из шейных позвонков (v.cervicalis); грудной отдел - из грудных позвонков (v.thoracica), ребер (costa) и грудной кости (sternum); поясничный – из поясничных позвонков (v.lumbalis); крестцовый – из крестцовой кости (os sacrum); хвостовой – из хвостовых позвонков (v.caudalis). Наиболее полное строение имеет грудной отдел туловища, где имеются грудные позвонки, ребра, грудная кость, которые в совокупности формируют грудную клетку (thorax), в которой располагаются сердце, легкие, органы средостения. Наименьшее развитие, у наземных животных имеет хвостовой отдел, что связано с потерей локомоторной функции хвоста при переходе животных к наземному образу жизни.

Осевой скелет подчинен следующим закономерностям строения тела, которые обеспечивают подвижность животного. К ним относят :

1) Биполярность (одноосность) выражается в том, что все отделы осевого скелета расположены на одной оси тела, причем, на краниальном полюсе находится череп, а на противоположном - хвост. Признак одноосности позволяет установить в теле животного два направления: краниальное - в сторону головы и каудальное в сторону хвоста.

2) Билатеральность (двусторонняя симметрия) характеризуется тем, что скелет также как и туловище может быть разделен сагиттальной, медиальной плоскостью на две симметричные половины (правую и левую), в соответствии с этим позвонки будут делиться на две симметричные половины. Билатеральность (антимерия) дает возможность различать на теле животного латеральное (боковое, наружное) и медиальное (внутреннее) направления.

3) Сегментарность (метамерия ) заключается в том, что тело может быть разделено сегментными плоскостями на определенное число сравнительно одинаковых метамеров - сегментов. Метамеры следуют вдоль оси спереди назад. На скелете такими метамерами являются позвонки с ребрами.

4) Тетраподия – это наличие 4 конечностей (2 грудных и 2 тазовых)

5) И последней закономерностью является, обусловленное силой тяжести, расположение в позвоночном канале нервной трубки, а под ней кишечной трубки со всеми её производными. В связи с этим на теле намечают дорсальное направление - в сторону спины и вентральное направление - в сторону живота.

Периферический скелет представлен двумя парами конечностей: грудными и тазовыми. В скелете конечностей присутствует только одна закономерность – билатеральность (антимерия ). Конечности парные, имеются левые и правые конечности. Остальные элементы ассиметричны. На конечностях различают пояса (грудной и тазовый) и скелет свободных конечностей.

При помощи пояса свободная конечность присоединяется к позвоночному столбу. Первоначально пояса конечностей имели по три пары костей: лопатку, ключицу и коракоидную кость (все сохранилось у птиц), у животных осталась, только одна лопатка, от коракоидной кости сохранился лишь отросток на бугорке лопатки с медиальной стороны, рудименты ключицы имеются у хищников (собака и кошка). В тазовом поясе хорошо развиты все три кости (подвздошная, лонная и седалищная), которые срастаются между собой.

Скелет свободных конечностей имеет три звена. Первое звено (stilopodium) имеет один луч (греч. stilos - столбик, podos- нога): на грудной конечности - это плечевая кость, на тазовой - бедренная. Вторые звенья (zeugopodium) представлены двумя лучами (zeugos - пара): на грудной конечности - это лучевая и локтевая кости (кости предплечья), на тазовой - большеберцовая и малоберцовая кости (кости голени). Третьи звенья (autipodium) образуют: на грудной конечности – кисть, на тазовой – стопу. В них различают базиподий (верхний участок - кости запястья и соответственно заплюсны), метаподий (средний - кости пясти и плюсны) и акроподий (самый крайний участок - фаланги пальцев).

ФИЛОГЕНЕЗ СКЕЛЕТА

В филогенезе позвоночных скелет развивается в двух направлениях: наружный и внутренний.

Наружный скелет выполняет защитную функцию, свойственен низшим позвоночным и располагается на теле в виде чешуи или панциря (черепаха, броненосец). У высших позвоночных наружный скелет исчезает, но отдельные его элементы остаются, изменяя свое назначение и месторасположение, становятся покровными костями черепа и, располагаясь уже под кожей, связаны с внутренним скелетом. В фило - онтогенезе такие кости проходят только две стадии развития (соединительно-тканную и костную) и называются первичными. Они не способны регенерировать – при травме костей черепа их вынуждены заменять искусственными пластинами.

Внутренний скелет выполняет, в основном, опорную функцию. В ходе развития под воздействием биомеханической нагрузки он постоянно изменяется. Если рассматривать беспозвоночных животных, то у них внутренний скелет имеет вид перегородок, к которым прикрепляются мышцы.

У примитивных хордовых животных (ланцетника), наряду с перегородками, появляется ось - хорда (клеточный тяж), одетый соединительнотканными оболочками.

У хрящевых рыб (акулы, скаты) уже вокруг хорды сегментально формируются хрящевые дужки, которые в дальнейшем образуют позвонки. Хрящевые позвонки, соединяясь друг с другом, формируют позвоночный столб, вентрально к нему присоединяются ребра. Таким образом, хорда остается в виде пульпозных ядер между телами позвонками. На краниальном конце тела формируется череп и вместе с позвоночным столбом участвует в образовании осевого скелета. В дальнейшем, хрящевой скелет заменяется костным, менее гибким, но более прочным.

У костистых рыб осевой скелет построен из более прочной - грубо-волокнистой костной ткани, которая характеризуется наличием минеральных солей и беспорядочным расположением коллагеновых (оссеиновых) волокон в аморфном компоненте.

С переходом животных к наземному образу жизни, у амфибий формируется новая часть скелета - скелет конечностей. В результате этого, у наземных животных формируется, кроме осевого скелета, ещё и периферический (скелет конечностей). У амфибий, так же как у костистых рыб, скелет построен из грубо-волокнистой костной ткани, но у более высокоорганизованных наземных животных (рептилии, птиц и млекопитающих) скелет уже построен из пластинчатой костной ткани, состоящей из костных пластинок, содержащих коллагеновые (оссеиновые) волокна, расположенные упорядоченно.

Таким образом, внутренний скелет позвоночных животных проходит в филогенезе три стадии развития: соединительно-тканную (перепончатую), хрящевую и костную. Кости внутреннего скелета, проходящие все эти три стадии, называются вторичными (примордиальными).

ОНТОГЕНЕЗ СКЕЛЕТА

В соответствии с основным биогенетическим законом Бэра и Э.Геккеля в онтогенезе скелет проходит так же три стадии развития: перепончатую (соединительно-тканную), хрящевую и костную.

На самой ранней стадии развития зародыша опорной частью его тела является плотная соединительная ткань, которая формирует перепончатый скелет. Затем у зародыша появляется хорда, и вокруг нее начинают формироваться вначале хрящевой, а позднее костный позвоночный столб и череп, а затем конечности.

В предплодном периоде весь скелет, за исключением первичных покровных костей черепа, хрящевой и составляет около 50% от массы тела. Каждый хрящ имеет форму будущей кости и покрыт надхрящницей (плотной соединительно-тканной оболочкой). В этот период начинается окостенение скелета, т.е. формирование костной ткани на месте хряща. Окостенение или оссификация (лат. оs-кость, facio-делаю) происходит как с наружной поверхности (перихондральная оссификация), так и изнутри (энхондральная оссификация). На месте хряща образуется грубо-волокнистая костная ткань. В результате этого, у плодов скелет построен из грубо-волокнистой костной ткани.

Только в неонатальный период грубо-волокнистая костная ткань замещается на более совершенную пластинчатую костную ткань. В этот период требуется особое внимание к новорожденным, так как их скелет еще не отличается прочностью. Что же касается хорды, то ее остатки располагаются в центре межпозвоночных дисков в виде пульпозных ядер. Особое внимание в этот период надо обратить на покровные кости черепа (затылочную, теменные и височные), так как они минуют хрящевую стадию. Между ними в онтогенезе образуются значительные соединительно-тканные пространства, называемые родничками (fonticulus), только к старости они полностью подвергаются окостенению (эндесмальная оссификация).

СТРОЕНИЕ КОСТИ С ТОЧКИ ЗРЕНИЯ БИОХИМИКА

Кости скелета имеют сложный химический состав. Каждая кость состоит из органических и неорганических соединений. К неорганическим соединениям относятся вода и минеральные соли (соли кальция, фосфора, магния, натрия, калия и других элементов). Органические соединения в основном представлены белком (оссеином) и липидами (желтый костный мозг). Кость, извлеченная из организма взрослого животного, содержит примерно 50% воды, 22% минеральных солей, 12% оссеина и 16% липидов. Эластичность кости зависит от оссеина, а твердость – от минеральных солей. Специфическое соединение органических и неорганических веществ придает кости упругость, эластичность, прочность и твердость. По твердости и упругости кость можно сравнить с медью, бронзой, железобетоном. Однако, соотношение составных компонентов кости может изменяться под воздействием многих факторов и зависит от возраста (у молодых животных соотношение оссеина к минеральным элементам 1:1, у взрослых 1:2, а у старых 1:7, т.е. с возрастом теряется эластичность и упругость кости, но возрастает ее твердость и хрупкость), питания (может быть несбалансированность рациона по кальцию и фосфору) и времени года (в конце пастбищного сезона всегда максимальное содержание минеральных веществ).

СТРОЕНИЕ КОСТИ С ТОЧКИ ЗРЕНИЯ ГИСТОЛОГА

Кость состоит из нескольких тканей, но основной является:

1) Костная ткань. Она чрезвычайно лабильна (постоянно и быстро изменяется), это единственная ткань в организме, кроме крови, которая может полностью восстанавливаться после повреждения. В ней происходят постоянно два диаметрально противоположных процесса - разрушение (резорбция) и восстановление (регенерация). Эти процессы происходят под влиянием механических сил, возникающих в период статики и динамики животного, и обеспечивают обновление скелета. Согласно экспериментальным исследованиям, скелет человека полностью обновляется в течение 6 месяцев.

Костная ткань состоит из клеток и межклеточного вещества . Существует три типа костных клеток:

а) Остеобласты - это молодые остеобразующие клетки, которые синтезируют межклеточное вещество - матрикс. По мере накопления межклеточного вещества остеобласты замуровываются в нем и становятся остеоцитами. Вспомогательной функцией остеобластов является участие в процессе отложения солей кальция в межклеточном веществе (кальцификации матрикса).

б) Остеоциты - это зрелые костные клетки. Они обеспечивают структурную и метаболическую интеграцию (объединение) кости. Существует мнение, что эти клетки участвуют в образовании оссеина (белкового компонента кости) и лизировании (растворении) межклеточного неминерализированного матрикса.

в) Остеокласты - гигантские многоядерные клетки, появляющиеся в местах рассасывания костных структур. Функция их заключается в удалении продуктов распада кости и лизисе минирализованных структур.

г) Межклеточное вещество (костный матрикс) в основном представлено коллагеновыми волокнами и аморфным компонентом, который заполняет промежутки между волокнами и клетками. На основе коллагеновых волокон откладывается минеральная часть костной ткани в виде двухфазной системы минералов: кристаллического гидроксиапатита и аморфного фосфата кальция (более лабильного). Благодаря наличию кристаллической фазы минералов в костях при упругих деформациях возникает пьезоэлектричество. Таким образом, образуется энергия, необходимая для происходящих в костях преобразований. Кость поляризуется: вогнутые части кости заряжаются отрицательно (обычно достраиваются костной тканью), выпуклые положительно (в них происходит резорбция - разрушение костной ткани).

Различают два вида костной ткани :

- Грубо-волокнистую , для которой характерно беспорядочное расположение коллагеновых волокон в межклеточном веществе; из этой ткани построен скелет плода и новорожденного, а у взрослого организма она встречается в зонах прикрепления сухожилий к костям и в швах черепах после их зарастания (синостозирования);

- Пластинчатую, особенностью которой является то, что коллагеновые (оссеиновые) волокна располагаются упорядоченно и формируют цилиндрические пластины, вставленные одна в другую вокруг сосудов и нервов. Эти образования получили названия «остеон». Итак, структурной единицей пластинчатой костной ткани являются остеоны.

Остеон (osteonum) представляет собой систему костных пластинок, концентрически расположенных вокруг канала, в котором проходят сосуды и нервы (гаверсов канал). Каждый остеон состоит из 5-20 цилиндрических пластинок и имеет диаметр 3-4 мм. Они склеены между собой аморфным веществом, пропитанным минеральными солями. Остеоны располагаются не беспорядочно, а соответственно функциональной нагрузке на кость. Из остеонов формируются перекладины костного вещества , или балки, которые в свою очередь образуют компактное вещество (если перекладины лежат плотно) или губчатое вещество (если перекладины лежат рыхло) кости. Из пластинчатой костной ткани в основном построен скелет взрослого организма.

Кроме костной ткани имеются:

2) Хрящевая ткань - покрывает суставные поверхности костей (гиалиновый хрящ) и образует зоны роста кости (метафизарный хрящ). Хрящевая ткань состоит из клеток (хондобластов, хондроцитов, хондокластов) и межклеточного вещества. Особенностью последнего является его сложный химический состав. В межклеточном веществе хряща органические компоненты представлены мукополисахаридами (хондроитинсерная кислота, кератинсульфат). Структурной единицей хрящевой ткани является хондрон, который представляет собой изогенную группу клеток, объединенную межклеточным веществом и окруженную капсулой.

Различают три вида хрящевой ткани :

- гиалиновый хрящ (из него построены в основном скелет эмбриона, у взрослого – суставные, реберные хрящи, хрящи гортани трахей, бронхов);

- волокнистый хрящ (образует межпозвоночные диски, мениски);

- эластический хрящ (формирует ушную раковину, наружный слуховой проход).

3) Соединительная ткань состоит из небольшого количества клеток (фибробластов, фиброцитов..), волокон (коллагеновых, эластических, ретулярных) и аморфного вещества. Основу аморфного компонента составляют гелеобразные мукополисахариды (нейтральные и кислые гликозамингликаны).

Различают несколько видов соединительной ткани:

- Рыхлая соединительная ткань всегдасопровождает сосуды (кровеносные и лимфатические) и нервы. Ее особенностью является преобладание клеток и аморфного компонента над волокнами. Рыхлая соединительная ткань образует внутренний слой надкостницы, выстилает изнутри костномозговую полость и формирует трабекулы, по которым внутрь кости проникают нервы, кровеносные и лимфатические сосуды;

- Плотная соединительная ткань покрывает кость снаружи и формирует фиброзный слой надкостницы. Ее характерной особенностью является преобладание волокнистых структур в межклеточном веществе.

5 )Миелоидная ткань образует паренхиму красного костного мозга и в ней происходит развитие клеток крови (эритроцитов, лейкоцитов…).

6) Кровь, лимфа - жидкие ткани внутренней среды, которые участвуют в транспорте питательных веществ, кислорода, углекислого газа и конечных продуктов обмена. Они выполняют трофическую, транспортную и защитную функции. В костях содержится до 50% всей венозной крови.

7) Эндотелий – это особый вид эпителиальных тканей, которыйобразует внутреннюю стенку сосудов.

8) Нервная ткань - в виде нервов и нервных окончаний.

СТРОЕНИЕ КОСТИ С ТОЧКИ ЗРЕНИЯ АНАТОМА

Каждая кость (лат. Оs - кость) является самостоятельным органом. Она имеет определенную форму, величину, строение. Кость как орган у взрослого животного состоит из тесно связанных друг с другом следующих компонентов:

1)Надкостница - periosteum, располагается на поверхности кости и состоит из двух слоев. Наружный (фиброзный) слой построен из плотной соединительной ткани и выполняет защитную функцию, укрепляет кость и увеличивает ее упругие свойства. Внутренний (oстеогенный) слой надкостницы построен из рыхлой соединительной ткани, в которой имеются нервы, сосуды и значительное количество остеобластов (остеообразующих клеток). За счет этого слоя происходит развитие, рост в толщину и регенерация костей после повреждения. Надкостница прочно срастается с костью при помощи соединительно-тканных прободающих (шарпеевских) волокон, проникающих в глубь кости. Таким образом, надкостница выполняет защитную, трофическую и остеообразующую функции.

Кость без надкостницы, как дерево без коры, существовать не может. Надкостница же, с аккуратно извлеченной из нее костью, может вновь образовывать кость за счет неповрежденных клеток своего внутреннего слоя.

2)Компактное (плотное) вещество кости substantia compacta -располагается за надкостницей и построено из пластинчатой костной ткани, которая формирует костные перекладины (балки). Отличительной особенностью компактного вещества является плотное расположение костных перекладин . Прочность компакты обеспечивается слоистым строением и каналами, внутри которых располагаются сосуды, несущие кровь. По прочности компактное вещество приравнивается к чугуну или граниту.

3)Губчатое вещество кости - substantia spongiosa – располагается под компактным веществом внутри кости и построено так же из пластинчатой костной ткани. Отличительной особенностью губчатого вещества является то, что костные перекладины располагаются рыхло и образуют ячейки, поэтому губчатое вещество действительно напоминает по строению губку. По сравнению с компактным оно обладает гораздо больше выраженными деформационными свойствами и формируется именно в тех местах, где на кость действуют силы сжатия и растяжения. Направление костных балок губчатого вещества соответствует основным линиям напряжения. Упругие деформации в губчатом веществе выражены значительно сильнее (4-6 раз). Распределение компактного и губчатого веществ зависит от функциональных условий кости. Компактное вещество находится в тех костях и в тех частях их, которые выполняют функции опоры и движения (например, в диафизах трубчатых костей). В места, где при большом объеме требуется сохранить легкость и вместе с тем прочность, образуется губчатое вещество (например, в эпифизах трубчатых костей).

4) Внутри кости располагаетсякостномозговая полость – cavum medullae, стенки которой изнутри, так же как и поверхность костных балок покрыта тонкой волокнистой соединительно-тканной оболочкойэндоостом - endoosteum. Как и периост, эндоост в своем составе имеет остеобласты, за счет которых кость растет изнутри и восстанавливается при переломах.

5) В ячейках губчатого вещества и костномозговой полости находится красный костный мозг – medulla ossium rubra, в котором протекают процессы кроветворения. У плодов и новорожденных все кости кроветворят, но с возрастом, постепенно, происходит замещение миелоидной (кроветворной) ткани на жировую и красный косный мозг превращается в желтый - medulla ossium flava - и теряет функцию кроветворения (у домашних животных этот процесс начинается со второго месяца после рождения). Соотношение между красным и желтым костным мозгом у месячных телят составляет 9:1, а у взрослых – 1:1. Дольше всего сохраняется красный костный мозг в губчатом веществе позвонков и грудной кости.

6)Суставной хрящ – cartilago articularis - покрывает суставные поверхности кости и построен из гиалиновой хрящевой ткани. Толщина хряща очень сильно варьирует. Как правило, в проксимальном отделе кости он тоньше, чем в дистальном. Суставной хрящ не имеет надхрящницы и никогда не подвергается окостенению. При большой статической нагрузке он истончается.

Таким образом, в кости взрослого животного послойно выделяют:

1) надкостницу, 2) компактное вещество, 3) губчатое вещество, 4)костномозговую полость с эндоостом, 5) костный мозг, 6) суставной хрящ.

У растущей кости, кроме указанных выше 6-ти компонентов имеются еще и другие, формирующие зоны роста кости. В такой кости есть еще метафизарный хрящ, отделяющий тело кости (диафиз) от ее концов (эпифизов), и три вида особо построенной костной ткани, контактирующей с данным хрящом и называемойсубхондральной костью.

КЛАССИФИКАЦИЯ КОСТЕЙ

В основу классификации положены форма (строение), развитие и функция костей.

ЛИТЕРАТУРА

1. Бауэр Э. С. Теоретическая биология. М.:ВИЭМ. 1935. 207 с.

Переиздания: а) Будапешт, 1982.

Б) Санкт- Петербург. :Росток. 2002.

В) Ижевск. : R & C Dynamiсs. 2000.

2. Базаров И. П. Термодинамика. М. :Высшая школа. 1991. 344 с.

3. Васильев Ю. М. Подвижная архитектура клетки. // Энциклопедия "Современное образование". Т.2. М. :Наука – Флинта. 1999. С. 163-171

4. Кобозев Н. И. О механизме катализа. III. О валентной и энергетической форме гетерогенного и ферментного катализа // ЖФХ. 1960. Т. 34. С. 1443-1459.

5. Хургин Ю. И., Чернавский Д.С., Шноль С.Э. Молекула белка-фермента, как механическая система // Мол. биол. 1967. Т. 1. С. 419-424.

6. Эрвин Бауэр и теоретическая биология (к 100-летию со дня рождения). Пущино-на-Оке. :Пущинский научн. центр. 1993. 256 с.

7. Режабек Б.Г. О поведении механорецепторного нейрона в условиях замыкания его цепью искусственной обратной связи. //ДАН СССР. Т.196, № 4. С. 981-984

8. Режабек Б. Г.. Устойчивое неравновесие живой материи - основа избирательной чувствительности биологических объектов к электро- магнитным полям. // Электромагнитные поля в биосфере. Т.2. М. :Наука. 1985. С. 5-16.

^ МЕТОДОЛОГИЧЕСКИЕ АСПЕКТЫ ПРОБЛЕМЫ СТАРЕНИЯ.

ПРОИСХОЖДЕНИЕ СТАРЕНИЯ В ЭВОЛЮЦИИ

В.Е.Чернилевский

Предложенный нами ранее общебиологический подход к изучению старения позволил установить, что происхождение и причины старения организмов связаны с сущностью жизни . Несмотря на многие теории дать определение сущности жизни, этот вопрос в биологии остается открытым. Это связано, в основном, с применением разных подходов к проблеме, а часто являются суждением ученого.

В данной работе на основе методологии научного познания рассмотрены подходы к изучению сущности жизни и происхождения старения.

МЕТОДОЛОГИЯ

Общенаучные методы познания предлагают разработанные и надежные методы и средства для правильной постановки, успешного решения сложных проблем и получения достоверного знания, позволяют оценить недостатки и преимущества используемых методов и приемов познания.

^ Основные принципы методологии

1. Структура научного знания - это установленные факты, закономерности, принципы - обобщающие группы фактов, постулаты, теории, законы, научные картины мира.

2. Логика и этапы научного познания включают в себя: постановку проблемы, разработку теории, решение проблемы, оценку теории на практике.

2.1. Научная проблема возникает, когда существующее знание не объясняет наблюдаемые факты или процессы и не указывает пути их решения (например старение). Проблема разрешается созданием теории.

2.2. Теория – это система знаний, объясняющих совокупность явлений и сводящая открытые в данной области законы к единому объединяющему началу. Теория строится для объяснения реальности, но описывает идеальные объекты и процессы с конечным числом существенных свойств. При создании теории проводится анализ фактов, процессов, используются: общие теоретические идеи и принципы биологии, фундаментальные законы природы и естественно-научная картина мира; категории и принципы философии; методы научного познания. Для раскрытия ненаблюдаемых явлений и сложных внутренних процессов применяются теоретические методы: интуиция, абстрагирование, идеализация, обобщение, анализ, синтез, идеи, гипотезы, индукция, дедукция, исторические и логические методы. Важную роль в разработке теории играет интуиция ученого. Однако методологические принципы облегчают построение структуры теории и ограничивают произвол исследователя. Предварительно строится схема, идеализация процесса, выделяются факты, играющие в нем решающую роль, создается упрощенная модель реального процесса. Одним из способов сведения сложности к простоте в теории является отсечение избыточной информации (принцип “Бритва Оккама”).

Теория опирается на систему эмпирических фактов . Опытные данные обычно не раскрывают сущность явления, требуется их систематизация и обобщение. Индукция позволяет путем повторного опыта, анализа и сравнения явлений выделить их общие существенные свойства, классифицировать и вывести общее (индуктивное) суждение, гипотезу, на основании которой исследуются факты. Логическим приемом здесь выступает абстрагирование – выделение класса процессов, явлений, свойств и отношений, неразличимых между собой с т.з. основного признака и отвлечение от других процессов, связей свойств и отношений. В центре внимания оказываются связи между процессами одного класса. Однако гипотеза в индукции не позволяет получить достоверное знание, а применяется для исключения логических ошибок.

В дедукции считается истинным суждение, выведенное логически из принятых аксиом, общенаучных принципов, постулатов и законов. В них уже обобщены многие известные факты. В гипотетико- дедуктивной модели выдвигается гипотетическое обобщение, которое сопоставляется с фактами. Для систематизации фактов должно быть принято минимальное число принципов и законов, объясняющих максимальное число фактов. Здесь связи между

процессами одного класса являются более достоверными, т.к. они основаны на объектитвных законах, т.е. опытные данные можно считать фактами , эмпирическим знанием, которое позволяет выводить следствия, предсказывать события и является базой для теории. Экстремальные принципы представляют обобщение многих фактов. Одним из них является принцип наименьшего действия, позволяющий решать задачу по конечным результатам (дедукция), когда процессы глубоко скрыты. Однако здесь надо задать целевую функцию. Этот принцип подходит для живых систем. Из него следуют принципы экономии энергии, оптимальной структуры органов и систем, размеров и пропорций тела и др.

2.3. ^ Решение проблемы. В основе теории должен быть заложен общий закон или исходный принцип, обладающий наибольшей общностью. При решении проблемы старения - это основной закон биологии, отражающий сущность жизни. При отсутствии такого закона мы применили общебиологический подход , используя известные законы теоретической биологии, которые представляют целостную научную систему, основанную на единстве биологической формы движения материи, общности происхождения и системной организации живого. Система биологических законов подтверждается логической связью между ними и обобщает эмпирическое знание . Это позволило нам ответить на вопрос с чем связано старение и самообновление организмов, а сущность этих процессов следует выводить из сущности жизни.

^ ПРОБЛЕМА СУЩНОСТИ ЖИЗНИ

Решению проблемы о сущности жизни посвящены усилия многих биологов и философов от древности до наших дней. Существуют десятки определений сущности жизни, но нет общепринятого. Наиболее общим считается определение Ф.Энгельса, данное им в “Анти-Дюринге”, 1878 г.: “Жизнь есть способ существования белковых тел, и этот способ существования состоит по своему существу в постоянном самообновлении химических составных частей этих тел”. Существенным моментом самообновления является обмен веществ. Ф.Энгельс отмечал недостатки этого определения как биологического закона. Однако здесь важно то, что сущность жизни, как предельное понятие в биологии, выводится не из биологических аксиом, а из общих законов существования и движения материи с помощью философских категорий, в частности диалектики природы. Поэтому это определение отражает общее коренное свойство живого, присущее всем биосистемам. Для перевода формулы Энгельса на общенаучный язык в ней каждое понятие требует особого исследования, причем самым трудным остается вопрос о сущности, причинах и механизмах самообновления, т.е. как живое воспроизводит и поддерживает само себя.
^

Живая природа – единая саморазвивающаяся система


“Белковые тела”, в современном смысле, - это вся живая природа. На основании закона единства и многообразия жизни она классифицируется на уровни организации биосистем: организменный, видовой, биоценотический, биосфера. Центральное место здесь занимают организмы (единица живого), которые имеют подчиненные подуровни: молекулярно-генетический, органеллы, клеточный, органный. Одноклеточные организмы имеют два первых подуровня. Вид (единица эволюции) по отношению к организмам представляет собой видовую сущность или во внешнем выражении – качество. Т.е. имеется единство уровней

существования биосистем и их иерархическое подчинение. На каждом уровне и подуровне происходит самообновление структур, деление клеток, размножение организмов, выживание видов в зависимости от способов их существования и развития с помощью обмена веществ, энергии и информации с окружающей средой. Особенность этого обмена определяется сущностью жизни, т.е. это такой обмен, который направлен на самообновление, размножение организмов и саморазвитие живого. При этом биосистемы сами себя создают и разрушают. Поэтому обмен возможен при самоообновлении систем. Обособляясь от внешней среды, биосистемы на каждом уровне сами создают разные условия окружения. Т.о., условия существования всех подуровней определяет организм путем генетически определенного обмена веществ. Репликация ДНК, обновление органелл происходят в клетке, деление клеток и обновление органов находятся под контролем организма. Прямое воздействие среды заменяется опосредованным, условия существования создаются, преобразуются и воспроизводятся под ведущим влиянием законов живой природы. Вид, биоценоз, живая природа в целом являются более открытыми системами. Одни организмы, виды служат условиями существования других. Т.о. на уровне живой природы действует всеобщий обмен веществ, энергии и информации. Неживые объекты не обладают таким обменом.

Следовательно, уровни биосистем, обмен веществ, энергии, информации и условия существования можно считать условиями саморазвития живого.

^ ЗАКОНЫ ЖИВОЙ ПРИРОДЫ

В истории развития живого закономерно возникали и исчезали организмы и виды, изменялись условия их существования, обмен веществ, энергии и информации. Однако от возникновения жизни сохранилось одно свойство как общее выражение основного закона существования живой материи - самосохранение, самоподдержание и саморазвите жизни. Он следует и из закона, который мы обозначим Всеобщий закон существования материи, или закон самосохранения, самоподдержания и саморазвития материи. Этот закон действует через универсальные законы (сохранения энергии (материи), тяготения, самоорганизации, цикличности и др.) в их единстве. Фактически этот закон отражает Мировой дух философии Гегеля как основы мироздания.

Все другие биологические законы отражают специфику явлений, но в связи с основным законом. В каждом законе должны быть указаны две стороны и связи между ними. В основном законе это, с одной стороны, постоянное самообновление, воспроизведение, размножение биосистем (молекулярных структур, клеток, органов, организмов, видов и т.д.); с другой стороны – средство (условие) осуществления этих процессов – обмен веществ, энергии и информации с окружающей средой, направленный на самообновление. Т.е. самообновление и есть специфический обмен (их единство). Для определения связи между ними следует понять каким именно образом действует основной и другие законы.

Законы в любом процессе и явлении действуют одновременно и выражают единый процесс развития (в нашем понимании – саморазвития). Это обобщено в законах диалектики: единство и борьба противоположностей (источник развития), переход количественных изменений в качественные, закон отрицания отрицания . Согласно диалектике, все события и процессы в развити любой системы происходят определенным, типичным образом, они проходят т.н. триаду: событие или процесс (тезис), возникает противоположное событие (антитезис), борьба между которыми (разрешение противоречия) заканчивается отрицанием тезиса и

антитезиса и нахождением решения (синтез), которое становится тезисом в следующей триаде. Развитие идет циклически. В любом законе связь – это отношение двух сторон, которые выступают в единстве, но имеют и различия. Объективной основой связи единства и различия является внутренняя противоречивость всех явлений, процессов развития, старого и нового, обновления и разрушения и т.д. В процессе развития между ними возникают и разрешаются внутренние противоречия, которые определяют переход от одной ступени к более высокой и воспроизведение собственных условий развития. Основной закон должен проявляться в основном противоречии между эволюционно сложившимся процессом самообновления на всех уровнях биосистем и ими же непрерывно осуществляемым обменом веществ, энергии и информации с изменяющимися условиями внешней среды. Эти условия на каждом уровне биосистем определяются и ограничиваются другими уровнями. Структура каждого уровня для своего сохранения имеет тенденцию к обособлению, используя низшие уровни, а внешие условия (более высокие уровни) требуют изменения, развития. Так, органеллы и клетки имеют мембраны, сохранение и обособленность вида обеспечивается видоспефифической ДНК, самообновлением на молекулярно- генетическом уровне вплоть до размножения на организменном уровне. При этом постоянно обновляемые биосистемы более высокого уровня (организм) являются одновременно условиями существования для низших уровней (органов, клеток и органелл). Происходит самосохранение биосистем и их самоизменение или разрушение. Единство этих процессов для организма и противоречия между ними определяются и разрешаются видом: для невымирания вида организмы должны сохраняться и в процессе развития изменяться до зрелости. При этом самообновление и изменение структур и обмена (развитие) направлено на достижение организмом зрелости, при которой изменения развития достигают критического уровня. Вступает в действие закон отрицания : противоречие между старым и новым разрешается размножением, отрицанием, завершением развития, материнский организм отмирает, а его потомство обеспечивает обновление вида. Гибель клеток является сигналом к делению стволовых клеток и обновлению органов. Следующий цикл сохранения и изменения организма (и его подуровней) определяется видом. Самообновление и обмен в процессе сохранения и изменения организма также изменяются и вступают в противоречие в момент созревания организма. Здесь определяющим является самообновление вида. Поэтому обмен переключается на процессы, связанные с размножением и становится не в состоянии обеспечить самообновление структур организма, которые ответственны за этот обмен. Протворечие разрешается размножением, созданием нового, обновленнного потомства и возобновленного обмена. Особенностью вида является то, что он состоит из разнокачественных организмов со всеми их подуровнями и единым геномом вида, все особи имееют один видоспецифический тип обмена и тождественны по наиболее важным признакам. Эти особенности обеспечивают самосохранение , самоизменение и приспособление вида в разных условиях при взаимодействии с внешней средой, и естественный отбор , т.е. способность к эволюции, неограниченной во времени . Вид становится практически открытой системой. Именно в эволюции проявляется видоспецифический обмен между особями, а также между организмами и средой. Такой обмен способствует сохранению и повышению жизнеспособности организмов. Это связано и с

усложнением строения организмов, что делает их более закрытыми системами. Способ существования живой природы состоит в ее непрерывном однонаправленном (необратимом) во времени саморазвитии и самоподдержании, которые обеспечиваются (обратимыми) циклами самообновления и разрушения биосистем вследствие закона циклического развития материи . Длительность циклов мала на молекулярно- генетическом уровне и увеличивается до бесконечности для живой природы в целом. Цикличность процессов основана на биоритмах (БР) на всех уровнях биосистем, которые во многом определяются обращением Земли относительно Солнца . Система БР организма определяет течение его биологического времени.

Многие характерные черты живого свойственны каталитическим и другим системам неживой природы: обмен веществ, энергии и информации; саморазвитие, саморегуляция процессов, реакции на внешние воздействия, приспособляемость, способность развиваться, существовать, гибнуть и др. Однако их особенностью для живых систем, как и биологических законов, является цель, направленная на выполнение основного закона и главного критерия живого. Так, отличие обмена веществ, энергии и информации живых и неживых систем состоит в различии носителей жизни, источниках и способах обмена энергии и потоков информации. Эти свойства проявляются в единстве у организмов одного вида, поэтому у каждой особи один (видовой) тип обмена веществ, энергии и информации. Он направлен на самообновление и на размножение организма для самосохранения вида. Многие законы и принципы молекулярной биологии: закон о направлениях переноса генетической информации, принципы комплементарности и самосборки макромолекул, сохранения генетической информации, закон сохранения структур и др. осуществляются in vitro, но в организмах они направлены на выполнение основного закона.

Т.о., действие всех законов направлено на самосохранение вида и жизни в целом, т.е. на выплнение основного закона.

^ САМООРГАНИЗАЦИЯ И РАЗВИТИЕ ЖИВОГО

Основной закон должен объяснять почему и каким образом происходит самосохранение и развитие жизни. Э.С.Бауэр вывел (как основной закон) принцип устойчивого неравновесия: “Все и только живые системы никогда не бывают в равновесии и исполняют за счет своей свободной энергии постоянную работу против равновесия …”, из которого следовали все законы биологии . Здесь устойчивое неравновесие, т.е. удаление системы от равновесия, является следствием постоянного возобновления термодинамического потенциала, связанного c деформированным состоянием молекул “живого белка”. Хотя это не подтвердилось, анализ данного принципа показывает, что он может работать на основе циклических сопряженных процессов с обратными связями. Таких сопряженных биохимических процессов сейчас известно много. В этом отношении наибольший интерес представляет изменение молекул в сопряженных реакциях ферментативного катализа. Кроме того, устойчивое неравновесие концентраций разных ионов наблюдается во многих процессах, например: различие концентраций К + и Na + внутри и вне клеток, неравновесные градиенты концентрации Н + и других ионов в создании электрохимического потенциала, в сопряженном сиснтезе АТФ и др. Все это не отменяет данный принцип как характерное свойство живого, но его нельзя считать основным законом. Ценность наследия Э.С.Бауэра состоит в глубоком методологическом анализе

проблемы сущности жизни. Э.С.Бауэр, в отличие от Ф.Энгельса, для вывода основного закона не использовал общие Начала науки, хотя применял категории диалектики природы. Поэтому формула Ф.Энгельса абстрактна, но более отражает существенные свойства живого, хотя она не (могла быть) наполнена конкретным биологическим содержанием. Это, конечно, осознавал и Э.С.Бауэр. Поэтому он выдвигает принцип качественной определенности : в чем общее и в чем основное отличие живого от неживого, хотя это обычный логический прием. Далее он применяет метод обобщающего абстрагирования : обобщенный (совместный) анализ частных законов биологии и всех явлений жизни с т.з. абстрактно- гипотетического принципа устойчивого неравновесия (метод индукции). С т.з. Э.Бауэра, он применял метод дедукции, т.к. считал этот принцип истинным, абсолютным. В результате он получает общий закон как подтверждение этого гипотетического принципа в качестве основного закона. Анализ данного принципа показывает, что устойчивое неравновесие является динамическим (циклическим) и отражает особенность нелинейных процессов в открытых и квазизакрытых системах, т.е. не только в живой, но и неживой материи (например, реакция Белоусова- Жаботинского и др.).

Здесь следует особо отметитить, что слабые стороны известных определений сущности жизни заключаются в невозможности объяснить причины саморазвития и самообновления живого. Без этого нельзя применять определения на практике. Так, Ф.Энгельс в “Анти-Дюринге” в качестве сущности живого выводит самообновление, а обмен веществ – существенный момент, но в “Диалектике природы” обмен веществ выдвигается как основа самообновления. Для понимания причины саморазвития живого необходимо исходить их универсальных законов материи: законов сохранения, самоорганизации и цикличности развития материи.

^ Для всех уровней развития материи характерны 2 фундаментальных принципа : самоорганизация (Со) – неравновесное упорядочивание систем и организация – равновесное упорядочивание, которые взаимосвязаны и цикличны. Эти принципы отражают законы диалектики развития материи. Со – это самопроизвольное, не связанное с действием внешних организующих сил регулярное поведение нелинейной системы. При этом часть свободной энергии системы затрачивается на работу против равновесия (Е), а часть рассеивается. При увеличении Е степень Со повышается, система усложняется, становится менее открытой, в ней повышается необратимость процессов. Поэтому в добиологической эволюции саморазвитие и Со могли осуществляться в открытых каталитических системах на основе базисной реакции с большим термодинамическим потенциалом . Закономерностями саморазвития этих систем являются: способность увеличения каталитической активности реакции вследствие изменения природы центра катализа; роста интенсивности базисной реакции, степени организации системы и интенсивности потоков информации. При этом имеет место сопряжение базисной и обратной реакции (направленной против равновесия, процесс, аналогичный электромагнитной самоиндукции). Этот автокаталитический процесс идет циклически с затуханием. Со подобных систем возможна, но ограничена кинетическим барьером: рост макромолекул происходит, когда скорость их воспроизведения превышает скорость распада. Для непрерывного обновления систем необходимо поддержение их далеко от термодинамического равновесия за счет эффективного производства энергии и наличия энергоемких структур, которые при этом распадаются. Развитие систем может прекратиться, т.е. они “вымирают”, эволюция их ограничена.

Упорядоченная Со возникает в нелинейных динамических системах , которыми являются гиперциклы (Гц). В начале избыток свободной энергии переводит систему в возбужденное состояние, далекое от равновесия. Далее поведение ее описывается системой нелинейных уравнений. Фазовое пространство системы, координатами которой являются независимые переменные (степени свободы), описывающее динамику системы, можно представить разделенным на области притяжения к различным аттракторам – относительно устойчивым состояниям, притягивающим к себе множество траекторй системы. Одним из аттракторов может быть разрушение системы (апоптоз). Т.о., аттрактор – это цель, направленность процесса. Решение нелинейных уравнений встречает значительные трудности. Однако, когда нас интересует конечный результат (отбора, устойчивости и т.д.) применяются достаточно разработанные качественные методы анализа особых точек: стоки – устойчивые точки, соответствуют стационарным состояниям в открытых системах; седловые точки – система с одним неустойчивым состоянием будет удаляться от этой точки; источник – точка, неустойчивая по всем направлениям; центры, вокруг которых существует множество концентрических траекторий (решений), фокусы и др. Т.о., результат процесса соответствует либо устойчивому стационарному состоянию, либо непрерывно и периодически изменяющемуся семейству состояний. Стационарное состояние находится вдали от равновесия, и это обеспечивает жизнь системы. Возможно неустойчивое состояние, самопроизвольное возникновение хаоса (саморазрушение системы), а из хаоса появление регулярной структуры, самообновление. Примером Со во времени является возникновение автоколебаний, автоволн (спиральных, тороидальных, концентрических и др.), которые являются основой биоритмов: биохимических циклов, ритмов структур и деления клеток, системы биоритмов организма, жизненных циклов, популяционных и биосферы в целом. Нелинейные системы очень чувствительны к слабыми воздействиями и управлению, особенно в точках бифуркации – точках ветвления решений (в онтогенезе – это смена фаз и стадий развития, клеточной дифференцировки и др.). Поэтому в живых системах оптимальным является управление генетической информацией . Анализ особых точек показывает , что каталитические системы с линейными или разветвленными цепями неустойчивы, не способны к отбору и Со, не интегрируют информацию и распадаются. Эти свойства появляются при замыкании цепей в Гц , система приближается к конечному состоянию с регулярными колебаниями вблизи особой точки, демонстрируя пример Со, связанный с нелинейными процессами. В таких Гц может накапливаться и сохраняться информация для усложнения и эволюции Гц. Земля, прошедшая космическую и геологическую эволюцию от температур порядка миллиардов градусов до близких к абсолютному нулю, 4 млрд лет назад обладала полным набором элементов периодической системы и максимальным разнообразием потенциальных барьеров: механических, химических, электрических, ядерных и др. Эти условия были подготовлены для возникновения жизни . Солнечная энергия трансформировалась в различные формы: круговорот воды, атмосферы, химические реакции, в т.ч. каталитические. Для обьяснения возникновения жизни с т.з. универсального закона Со материи наибольшим признанием пользуется метод М.Эйгена . Предпосылками для Со рассматриваются сети каталитических реакций в сочетании с механизмами нелинейной обратной связи, обеспечивающими автокаталитическое развитие систем. Молекулы, выполняющие функции “нуклеиновых кислот“ (НК) и обладающие способностью к самовоспроизведению, действуют как

катализаторы при синтезе молекул, выполняющих функции ферментов, которые катализируют самовоспроизведение “НК“. Возникший Гц обеспечивает непрерывное выживание “НК“ и белков. Т.о. Гц построенны из автокатализаторов (циклов воспроизведения), связанных посредством наложенного на систему автокатализа, т.е. основанные на нелинейном автокатализе и являются нелинейными динамическими системами. Они способны к усложнению в Гц 2-го и более порядков. Т.о. Гц – это принцип Со и интеграции самореплицирующихся единиц, а возникают Гц вследствие законов Со и цикличности процессов материи. Шансы на выживание для Гц разных размеров и размерностей примерно одинаковы. В конкуренции среди разных видов Гц преимущество имеют Гц, способные воспроизводить себе подобные, начиная цикл с начала . Это возможно при создании механизма кодированного управления. Среди различных вариантов такого механизма природа создала генетический код и механизм трансляции. Создание его могло происходить в Гц, но при наличии в среде нуклеотидов и аминокислот.

Остается дискусионной тайна универсальности генетического кода НК и как возникло кодовое соответствие между ДНК и белками. В работе выявлено образование левых и правых тетрамеров Н 8 О 4 почти кипящей воды. 4 млрд лет назад на горячей поверхности Земли на зеркально симметричных цепочках остывающей воды мог идти синтез хирально чистой органики (все аминокислоты (АК) в живом веществе левые, а сахара – правые). Первыми должны появиться АК как более термостойкие. Предполагается, что в капле воды при фазовом переходе образовалась первая цепочка из 4 тетрамеров воды, и случайно оказалась левой. На ней была синтезирована первая левая АК, которая могла быть связана только с 3 тетрамерами. Следующая АК начинала синтезироваться на 4-м тетрамере цепочки и затем присоединяла к ней вторую, тоже левую цепочку воды, и продолжала синтез на ней. Так последовательно шел матричный синтез белка. На правых цепочках шел синтез сахаров, которые соединялись между собой остатками фосфата, образуя скелет ДНК или РНК. К нему через сахара присоединялись азотистые основания, образуя нуклеотиды и в конечном итоге НК. В коде их оснований отражалась матрица аминокислот. В генетическом коде существуют триплетные наборы азотистых оснований – по 3 на каждую АК, поэтому могли реализоваться лишь 20 вариантов известных АК. Из принципов экстремальности следует, что наиболее экономный способ кодировки дают двоичные или троичные коды, т.е. происходит стандартизованная, универсальная, упаковка информации с помощью именно этих кодов. Эти процессы можно наблюдать и в настоящее время. Так известно, что при извержении вулканов образуются тонны органических соединений (АК, сахара, порфирины и др.).

Важной функцией Гц является самосохранение и воспроизведение макромолекул при наличии среди них информационных молекул, которые кодируют эту функцию, при этом информация сохраняется. Среди таких молекул НК обладают свойством самосборки, а катализаторами могут быть пептиды. Поэтому первые репликативные единицы (типа тРНК), видимо, возникли при наличии некоторых видов нуклеотидов и белков-катализаторов и не превышали 100 нуклеотидов. Увеличение точности саморепликации коротких НК требовало наличия катализатора, который должен тоже воспроизводиться по механизму трансляции. Для механизма трансляции достаточно несколько таких единиц, связанных между собой циклически в Гц. Т.о. Гц явился необходимым условием для нуклеации интегрированных самовоспроизво-

дящихся систем. По расчетам М.Эйгена генетический код возник 3,8 млрд лет назад. Новая информация в Гц возникает в результате случайного выбора “раз и навсегда“ и самоотбора (а не отбора). Ценность ее при самоотборе определяется повышением устойчивости системы по сравнению с конкурирующими системами и принципом минимального действия (наименьшими затратами энергии), т.е. информация должна быть закодирована. При этом прежние структуры заменяются новыми после воспроизведения и разрушения системы в последующих поколениях (информация запоминается).

Дальнейшее усложнение Гц возможно при обособлении как функциональных единиц, так и самих Гц. Эволюция от ГЦ переходит на новый уровень . Это должно привести к новому качеству систем – видам одноклеточных организмов с единым ДНК-геномом и ферментативным аппаратом с высокой точностью репродукции. Современный генетический код и механизм трансляции могли возникнуть в процессе эволюционной Со в Гц. Основными этапами образования кода, по М.Эйгену, являются: репликация РНК в отсутствие ферментов (число нуклеотидов n=60), репликация тРНК (n=100), репликация тРНК с помощью репликаз (n=4500), репликация ДНК с помощью полимераз (n=4.10 6), репликация и рекомбинации ДНК (n=5.10 9). Эти этапы связаны с верхним пределом количества информации. У прокариотов превышение информационной емкости (n=10 4) одноцепочечной молекулы требует участия двухцепочечных матриц и ферментов. Новый предел n=10 7 , установленный механизмом репликации ДНК у прокариотов, не мог быть превзойден до появления генетической рекомбинации, используемой всеми эукариотами.

Источником развития в эволюции организмов является противоречие самосохранения (устойчивости, стабильности) системы и свободы выбора. Точность воспроизводства, усложнение и рост организации требует максимальной ценности информации и абсолютной устойчивости системы, т.е. ограничивает свободу выбора и дальнейшее развитие. Противоречие снимается разделением развития на онтогенез и филогенез . Вид, обладая низким уровнем организации и широкими возможностиями выбора, обеспечивают неограниченное развитие. А организмы проявляют тенденцию к обособлению от среды с помощью мембран, обеспечивают сохранение и передачу информации. Оставаясь открытыми системами, они для эффективного использования энергии и ресурсов могут существовать при наличии пространственного разделения компонентов в рамках определенных структур, обеспечивающих функционирование, поддержание гомеостаза и обновление организма. Неравновесное распределение веществ и энергии, передвижение веществ против градиента осмотических сил (процессы всасывания, секреции, избирательного поглощения веществ и др.) сопряжены с падением и восстановлением свободной энергии за счет указанных структур. При этом организм может функционировать в более экономичном, чем в стационарном, режиме, включая свои подсистемы попеременно по сигналам о потребности, т.е. активно выбирает и меняет свою информацию. Эволюционный отбор закрепляет такой тип обмена веществ и энергии со средой.

Размножение всех видов связано с универсальным механизмом рекомбинации генома , приводящим к изменчивости потомства – условию для естественного отбора. У прокариот – это конъюгация, трансформация, трансдукция; у эукариот – половой процесс. Важно особо подчеркнуть, что после размножения развитие потомства возобновляется с начала . Появление в геноме избыточной ДНК связано с появлением эукариот. В каждый организм

заложен видовой геном. Это обеспечивает развитие организмов в любых условиях обитания вида, при этом только часть генома проявляется в фенотипе, а большая часть передается следующим поколениям, совершив при этом рекомбинацию генома. Отбор в эволюции ценности типов рекомбинации должен привести к мейозу и появлению полового процесса , а также других важных для выживания эукариот признаков, которые коррелируют с избыточностью генома: длительность митоза, мейоза, развития; размер клеток, скорость метаболизма, устойчивость к холоду, голоду, засухе и др.

Первыми организмами на Земле были археобактерии , которые образовали виды почти на каждый элемент периодической системы, извлекая из них энергию. Растения использовали энергию Солнца, а гетеротрофы – энергию из растений. Аэробные организмы извлекали в 9 раз больше энергии, чем анаэробный способ. Здесь прослеживается усложнение организмов и необходимость гомеостаза, который требует энергозатрат. У бактерий они составляют почти половину своей энергии покоя, у высокоорганизованных организмов - почти всю энергию. В итоге КПД простейших при построении новых структур составляет 75%, а у высокоорганизованных он снижается до доли процента. Для аэробных организмов возникло противоречие между самосохранением и развитием, которое разрешилось образованием жизненных циклов (ЖЦ) развития. Период ЖЦ определяется числом поколений в ЖЦ и имеет относительно стабильную видовую длительность, ограниченную нижней и верхней границами. Длительность жизни особей определяется периодом размножения и они имеют один генотип. ЖЦ стал единицей развития с большим числом степеней свободы, более жизнеспособным, чем особь. Для решения общих задач ЖЦикла, особи в ЖЦ должны иметь фенотипические различия (аналогично соматическим клеткам животных) для выполения разных функций. Такая дифференциация особей в ЖЦ происходит при их размножении. Здесь возникает новое противоречие между развитием и сохранением ЖЦ: как замкнуть и восстановить ЖЦ и зафиксировать его как исходную единицу. Это стало возможным у эукариот при появлении мейоза и половых процессов , полностью восстанавливающих начало развития. Т.о. ЖЦ после серии бесполого размножения особей (агамонтов) заканчивается половым процессом. Половой процесс был закреплен как новый этап пргрессивной эволюции видов. Для вида главное – сохранение структуры ЖЦ любой ценой. Поэтому целью развития ЖЦ является подготовка к половому процессу. Он происходит у половых особей (гамонтов), последних в ЖЦ, которые формируются в процессе “половой диффернцировки” клона клеток. ЖЦ заканчивается в связи с выделением агамонтами в среду “половых веществ” (половое созревание (ПС) клона), мейозом, редукцией генома у половых особей и их спариванием. Здесь появляется старение клона , которое выражается в замедлении делений особей, изменениях в ядерном аппарате и снижении жизнеспособности клеток. ЖЦ разрушается и появляется такой же ЖЦ с другим генотипом. ЖЦ одноклеточных - более открытая система, и для повышения жизнеспособности возможно его расширение в эволюции, однако для замыкания ЖЦ оно ограничивается относительно небольшими возможностями мейоза у одноклеточных. Это противоречие разрешается появлением колоний одноклеточных . Старение их происходит при ПС колоний. У низших колоний Pleodorina происходит дифференцировка на смертную сому – 4 клетки из 32. Здесь впервые старение появляется внутри колониального организма: после ПС соматические клетки гибнут и колония распадается.

Повторяемость ЖЦ стала возможна разделением соматической части организма и половой (репродуктивной ) линии клеток. В колониях семейства вольвоксовых при делении зиготы образуются репродуктивные клетки. Обычно после 32-клеточной стадии колонии происходит образование половых и бесполых репродуктивных клеток, из которых образуются половые или бесполые колонии. Кроме того, образуется несколько сот – тысяч смертных соматических клеток. Этот процесс закрепился “раз и навсегда”. Так, прослеживается аналогия с онтогенезом высших животных: бластула, отделение первичных половых клеток от соматических (начало половой дифференцировки организма), старение организма после ПС. Колонии создали условия для возникновения многообразия многоклеточных организмов .

У всех видов организмов существуют 2 способа размножения: бесполое и половое , которые представлены разнообразием форм размножения у разных видов. Для ЖЦ многих видов беспозвоночных характерно чередование нескольких бесполых, морфологически различных, поколений особей (деление, почкование и т.д.) или фаз развития с метаморфозом (у насекомых и др.), которое заканчивается половым, последним, поколением. Здесь жизнеспособность организмов выше и длительность жизни больше, чем у одноклеточных. ЖЦ высших животных и человека представлен стадиями развития и совпадает с онтогенезом . Это более закрытая система, ЖЦ сжимается в одном организме и создается высокий уровень организации с повышенной жизнеспособностью, связанной с состоянием информационной устойчивости, которое обеспечивается морфофизиологической слаженностью всей организации системы при участии системы биоритмов организма .

В теории ЖЦ обычно не обсуждаются важные вопросы: чем объясняется, что ЖЦ начинается с начала; почему бесполые организмы или их фрагменты дают себе подобных; почему половые клетки и зигота дают начало развития, начало ЖЦ, а соматическме клетки стареют? Это можно объяснить наличием т.н. зародышевой пла змы (ЗП) в некоторых стволовых клетках (СК) бесполых организмов, в яйце и зиготе половых организмов, и отсутствием ее в соматических клетках . ЗП это совокупность цитоплазматических факторов (в виде гранул), определяющих развитие половых клеток и обособление их от соматических (начало половой дифференцировки организма). У млекопитающих это обособление происходит в эмбриональном развитии. При делении зиготы одно ядро попадает в зону ЗП. Бластомеры с таким ядром являются тотипотентными СК, которые дают начало половым клеткам. Т.о. тотипотентность СК (половых или бесполых) обеспечивает начало ЖЦ организма и передается следующим поколениям, обеспечивая самоподдержание жизни на Земле. СК, сохраняя мультипотентность, обеспечивают развитие и жизнеспособность организма, производя соматические клетки, которые теряют потентность и имеют ограниченный потенциал делений. Поэтому все многоклеточные организмы в ЖЦ после достижения полового созревания (ПС) стареют и умирают .

Изложенное позволяет сформулировать основной закон, сущность, живого : жизнь есть способ существования живой материи, который состоит в самоподдержании, самосохранении и саморазвитии живого путем непрерывного процесса самообновления, самовоспроизведения и эволюции на всех уровнях организации живого с помощью обмена веществ, энергии и информации организмов с окружающей средой. Действие биологических законов направлено на выполнение основного закона.

^ Главным критерием живой материи (в отличии от неживой) является самообновление и самовоспроизведение на всех уровнях живого, основаное на универсальном генетическом коде НК, биохимическом единстве живого, самоорганизующихся программах развития, видоспецифичном обмене веществ, энергии и информации, направленном на воспроизведение.

^ Живая материя представленна уровнями организации живого: организмы, виды (единицы эволюции), сообщества, биосфера в их единстве. Единицей жизни являются организмы, имеющие общие видоспецифические структуры для развития, самообновления, размножения и обмена веществ, энергии и информации с окружающей средой. Единицей развития является ЖЦ организма. Старение универсально для ЖЦ организмов всех видов и является видовым признаком, типичным для всех особей вида. У многоклеточных оно проявляется только у половых особей в ЖЦ после полового созревания, бесполым особям оно не свойственно. Подробно аспекты старения изложены автором в . Исходя из сущности жизни замедление старения с целью продления жизни человека возможно воздействием на обмен веществ, энергии и информации с окружащей средой в пределах возможностей существования вида .

Дальнейшая эволюция вида человека просматривается через расширение сознания, переход его в открытую систему, т.е. в единство со Вселенной, овладение её энергией и информацией, и способностью бессмертного существования по законам Вселенной.

ЛИТЕРАТУРА


  1. Бауэр Э.С. Теоретическая биология. М. Л. :ВИЭМ. 1935. 206 с.

  2. Колясников Ю.А. Тайна генетического кода – в структуре воды //Вестник РАН. 1993. Т.63, №8. С.730-732.

  3. Руденко А.П. Самоорганизация и прогрессивная эволюция в природных процессах в аспекте концепции эволюционного катализа. //Рос. хим. ж-л. 1995. Т.39, №2. С.55-71.

  4. Эйген М., Шустер П. Гиперцикл. –М. :Мир. 1982. 218 с.

  5. Чернилевский В.Е. Общебиологический подход к изучению причины старения //Биологические проблемы старения и увеличения продолжительности жизни. М.:Наука. 1988. С.21-32.
6. Чернилевский В.Е. Роль биоритмов в процессах старения и резервы продления жизни //Докл. МОИП. Общая биология. 2003. МОИП. Деп. в ВИНИТИ. № 1585-В2004. М. 2004. С.28-38.