Ароматические амины проявляют. Амины

Так как амины, являясь производными аммиака, имеют сходное с ним строение (т.е. имеют неподеленную пару электронов в атоме азота), то они и проявляют подобные ему свойства. Т.е. амины, как и аммиак, являются основаниями, так как атом азота может предоставлять электронную пару для образования связи с электроннедостаточными частицами по донорно-акцепторному механизму (соответствие определению основности по Льюису).

I. Свойства аминов как оснований (акцепторов протонов)

1. Водные растворы алифатических аминов проявляют щелочную реакцию, т.к. при их взаимодействии с водой образуются гидроксиды алкиламмония, аналогичные гидроксиду аммония:

CH 3 NH 2 + H 2 O CH 3 NH 3 + + OH −

Анилин с водой практически не реагирует.

Водные растворы имеют щелочной характер:

Связь протона с амином, как и с аммиаком, образуется по донорно-акцепторному механизму за счет неподеленной электронной пары атома азота.

Алифатические амины – более сильные основания, чем аммиак, т.к. алкильные радикалы увеличивают электронную плотность на атоме азота за счет +I -эффекта. По этой причине электронная пара атома азота удерживается менее прочно и легче взаимодействует с протоном.

2. Взаимодействуя с кислотами, амины образуют соли:

C 6 H 5 NH 2 + HCl → (C 6 H 5 NH 3)Cl

хлорид фениламмония

2CH 3 NH 2 + H 2 SO 4 → (CH 3 NH 3) 2 SO 4

сульфат метиламмония

Соли аминов – твердые вещества, хорошо растворимые в воде и плохо растворимы в неполярных жидкостях. При реакции с щелочами выделяются свободные амины:

Ароматические амины являются более слабыми основаниями, чем аммиак, поскольку неподеленная электронная пара атома азота смещается в сторону бензольного кольца, вступая в сопряжение с π-электронами ароматического ядра, что уменьшает электронную плотность на атоме азота (-М-эффект). Напротив, алкильная группа является хорошим донором электронной плотности (+I-эффект)..

или

Уменьшение электронной плотности на атоме азота приводит к снижению способности отщеплять протоны от слабых кислот. Поэтому анилин взаимодействует лишь с сильными кислотами (HCl, H 2 SO 4), а его водный раствор не окрашивает лакмус в синий цвет.

У атома азота в молекулах аминов есть неподеленная пара электронов, которая может участвовать в образовании связи по донорно-акцепторному механизму.

анилин аммиак первичный амин вторичный амин третичный амин

электронная плотность на атоме азота возрастает.

Из-за наличия в молекулах неподеленной пары электронов амины, как и аммиак, проявляют основные свойства.

анилин аммиак первичный амин вторичный амин

основные свойства усиливаются, из-за влияния типа и числа радикалов.

C 6 H 5 NH 2 < NH 3 < RNH 2 < R 2 NH < R 3 N (в газовой фазе)

II. Окисление аминов

Амины, особенно ароматические, легко окисляются на воздухе. В отличие от аммиака, они способны воспламеняться от открытого пламени. Ароматические амины самопроизвольно окисляются на воздухе. Так, анилин быстро буреет на воздухе вследствие окисления.

4СH 3 NH 2 + 9O 2 → 4CO 2 + 10H 2 O + 2N 2

4C 6 H 5 NH 2 + 31O 2 → 24CO 2 + 14H 2 O + 2N 2

III. Взаимодействие с азотистой кислотой

Азотистая кислота HNO 2 – неустойчивое соединение. Поэтому она используется только в момент выделения. Образуется HNO 2 , как все слабые кислоты, действием на ее соль (нитрит) сильной кислотой:

KNO 2 + HCl → НNO 2 + KCl

или NO 2 − + H + → НNO 2

Строение продуктов реакции с азотистой кислотой зависит от характера амина. Поэтому данная реакция используется для различения первичных, вторичных и третичных аминов.

· Первичные алифатические амины c HNO 2 образуют спирты:

R-NH 2 + HNO 2 → R-OH + N 2 + H 2 O

  • Огромное значение имеет реакция диазотирования первичных ароматических аминов под действием азотистой кислоты, получаемой по реакции нитрита натрия с соляной кислотой. А в последствии образуется фенол:

· Вторичные амины (алифатические и ароматические) под действием HNO 2 превращаются в N-нитрозопроизводные (вещества с характерным запахом):

R 2 NH + H-O-N=O → R 2 N-N=O + H 2 O

алкилнитрозамин

· Реакция с третичными аминами приводит к образованию неустойчивых солей и не имеет практического значения.

IV. Особые свойства:

1. Образование комплексных соединений с переходными металлами:

2. Присоединение алкилгалогенидов Амины присоединяют галогеналканы с образованием соли:

Обрабатывая получившуюся соль щелочью, можно получить свободный амин:

V. Ароматическое электрофильное замещение в ароматических аминах (реакция анилина с бромной водой или с азотной кислотой):

В ароматических аминах аминогруппа облегчает замещение в орто- и пара-положениях бензольного кольца. Поэтому галогенирование анилина происходит быстро и в отсутствие катализаторов, причем замещаются сразу три атома водорода бензольного кольца, и выпадает белый осадок 2,4,6-триброманилина:

Эта реакция бромной водой используется как качественная реакция на анилин.

В этих реакциях (бромирование и нитрование) преимущественно образуются орто - и пара -производные.

4. Способы получения аминов.

1. Реакция Гофмана . Один из первых методов получения первичных аминов − алкилирование аммиака алкилгалогенидами:

Это не самый лучший метод, так как в результате получается смесь аминов всех степеней замещения:

и т.д. Алкилирующими агентами могут выступать не только алкилгалогениды, но и спирты. Для этого смесь аммиака и спирта пропускают над оксидом алюминия при высокой температуре.

2. Реакция Зинина - удобный способ получения ароматических аминов при восстановлении ароматических нитросоединений. В качестве восстановителей используются: H 2 (на катализаторе). Иногда водород генерируют непосредственно в момент реакции, для чего обрабатывают металлы (цинк, железо) разбавленной кислотой.

2HCl + Fe (стружка) → FeCl 2 + 2H

C 6 H 5 NO 2 + 6[H] C 6 H 5 NH 2 + 2H 2 O.

В промышленности эта реакция протекает при нагревании нитробензола с водяным паром в присутствии железа. В лаборатории водород "в момент выделения" образуется по реакции цинка со щелочью или железа с соляной кислотой. В последнем случае образуется хлорид анилиния.

3. Восстановление нитрилов. Используют LiAlH 4:

4. Ферментатичное декарбоксилирование аминокислот:

5. Применение аминов.

Амины применяются в фармацевтической промышленности и органическом синтезе (CH 3 NH 2 , (CH 3) 2 NH, (C 2 H 5) 2 NH и др.); при производстве найлона (NH 2 -(CH 2) 6 -NH 2 − гексаметилендиамин); в качестве сырья для производства красителей и пластмасс (анилин), а также пестицидов.

Список используемых источников:

  1. О.С. Габриелян и др. Химия. 10 класс. Профильный уровень: учебник для общеобразовательных учрждений; Дрофа, Москва, 2005г.;
  2. «Репетитор по химии» под редакцией А. С. Егорова; «Феникс», Ростов-на-Дону, 2006г;
  3. Г. Е. Рудзитис, Ф. Г. Фельдман. Химия 10 кл. М., Просвещение, 2001;
  4. https://www.calc.ru/Aminy-Svoystva-Aminov.html
  5. http://www.yaklass.ru/materiali?mode=lsntheme&themeid=144
  6. http://www.chemel.ru/2008-05-24-19-21-00/2008-06-01-16-50-05/193-2008-06-30-20-47-29.html
  7. http://cnit.ssau.ru/organics/chem5/n232.htm

Амины - органические производные аммиака, содержащие аминогруппу NH 2 и органический радикал. В общем случае формула амина представляет собой формулу аммиака, в которой атомы водорода заменены на углеводородный радикал.

Классификация

  • По тому, сколько в аммиаке атомов водорода заменено радикалом, различают первичные амины (один атом), вторичные, третичные. Радикалы могут быть одинаковыми или разнотипными.
  • Амин может содержать не одну аминогруппу, а несколько. По этой характеристике их делят на моно, ди-, три-, … полиамины.
  • По типу радикалов, связанных с атомом азота, различают алифатические (не содержащие циклических цепей), ароматические (содержащие цикл, самый известный - анилин с бензольным кольцом), смешанные (жиро-ароматические, содержащие циклический и нециклический радикалы).

Свойства

В зависимости от длины цепочки атомов в органическом радикале, амины могут быть газообразными (три-, ди-, метиламин, этиламин), жидкими или твердыми веществами. Чем длиннее цепь, тем тверже вещество. Простейшие амины водорастворимы, но по мере перехода к более сложным соединениям водорастворимость уменьшается.

Газообразные и жидкие амины - вещества с выраженным запахом аммиака. Твердые практически лишены запаха.

Амины проявляют в химических реакциях сильные оснóвные свойства, в результате взаимодействия с неорганическими кислотами получаются алкиламмониевые соли. Реакция с азотистой кислотой является качественной для этого класса соединений. В случае первичного амина получается спирт и газообразный азот, со вторичным - нерастворимый желтый осадок с выраженным запахом нитрозодиметиламина; с третичным реакция не идет.

Реагируют с кислородом (горят на воздухе), галогенами, карбоновыми кислотами и их производными, альдегидами, кетонами.

Практически все амины, за редким исключением, ядовиты. Так, самый знаменитый представитель класса, анилин, легко проникает через кожный покров, окисляет гемоглобин, угнетает ЦНС, нарушает обмен веществ, что может привести даже к смерти. Токсичны для человека и пары.

Признаки отравления:

Одышка,
- синюшность носа, губ, кончиков пальцев,
- частое дыхание и усиленное сердцебиение, потеря сознания.

Первая помощь:

Смыть хим.реактив ватой со спиртом,
- обеспечить доступ к чистому воздуху,
- вызвать «Скорую помощь».

Применение

В качестве отвердителя эпоксидных смол.

Как катализатор в химпроме и металлургии.

Сырье для получения полиамидных искусственных волокон, например, нейлона.

Для изготовления полиуретанов, пенополиуретанов, полиуретановых клеев.

Исходный продукт для получения анилина - основы для анилиновых красителей.

Для производства лекарственных средств.

Для изготовления фенолформальдегидных смол.

Для синтеза репеллентов, фунгицидов, инсектицидов, пестицидов, минеральных удобрений, ускорителей вулканизации резины, антикоррозионных реактивов, буферных растворов.

Как добавка к моторным маслам и топливам, сухое горючее.

Для получения светочувствительных материалов.

Уротропин используется как пищевая добавка, а также ингредиент косметических средств.

В нашем интернет-магазине можно купить реактивы, относящиеся к классу аминов.

Метиламин

Первичный алифатический амин. Востребован как сырье для производства лекарств, красителей, пестицидов.

Диэтиламин

Вторичный амин. Применяется в качестве исходного продукта при получении пестицидов, лекарств (например, новокаина), красителей, репеллентов, добавок к топливу и моторным маслам. Из него изготавливают реактивы для защиты от коррозии, для обогащения руд, отверждения эпоксидных смол, ускорения процессов вулканизации.

Триэтиламин

Третичный амин. Используется в химпроме в качестве катализатора при производстве резин, эпоксидных смол, пенополиуретанов. В металлургии - катализатор отвердения в безобжиговых процессах. Сырье в органическом синтезе лекарств, минеральных удобрений, средств для борьбы с сорняками, красок.

1-бутиламин

Третбутиламин, соединение, в котором с азотом связана трет-бутильная органическая группа. Вещество применяется при синтезе усилителей вулканизации резины, лекарств, красителей, дубильных веществ, препаратов против сорняков и насекомых.

Уротропин (гексамин)

Полициклический амин. Востребованное в экономике вещество. Используется как пищевая добавка, лекарство и компонент лекарств, ингредиент косметических средств, буферных растворов для аналитической химии; как сухое горючее, отвердитель полимерных смол, в синтезе фенолформальдегидных смол, фунгицидов, взрывчатых веществ, средств для защиты от коррозии.

Амины - это производные аммиака (NH 3), в молекуле которого один, два или три атома водорода замещены уг­леводородными радикалами.

По числу углеводородных радикалов, замещающих атомы водорода в молекуле NH 3 , все амины можно разделить на три типа:

Группа - NH 2 называется аминогруппой. Существуют также амины, которые содержат две, три и более аминогрупп

Номенклатура

К названию органических остатков, связанных с азотом, добавляют слово «амин», при этом группы упоминают в алфавитном порядке: CH3NC3H - метилпропиламин, CH3N(C6H5)2 - метилдифениламин. Для высших аминов название составляется, взяв за основу углеводород, прибавлением приставки «амино», «диамино», «триамино», указывая числовой индекс атома углерода. Для некоторых аминов используются тривиальные названия: C6H5NH2 - анилин (систематическое название - фениламин).

Для аминов возможна изомерия цепи, изомерия положения функциональной группы, изомерия между типами аминов

Физические свойства

Низшие предельные первичные амины - газообразные вещества, имеют запах аммиака, хорошо растворяются в воде. Амины с большей относительной молекулярной массой - жидкости или твердые вещества, растворимость их в воде с увеличением молекулярной массы уменьшается.

Химические свойства

По химическим свойствам амины похожи на аммиак.

1. Взаимодействие с водой - образование гидроксидов замещенного аммония. Раствор аммиака в воде обладает слабыми щелочными (основными) свойствами. Причина основных свойств аммиака - наличие у атома азота неподеленной электронной пары, которая участвует в образовании донорно-акцепторной связи с ионом водорода. По этой же причине амины также являются слабыми основаниями. Амины - органические основания.

2. Взаимодействие с кислотами - образование солей (реакции нейтрализации). Как основание аммиак с кислотами образует соли аммония. Аналогично при взаимодействии аминов с кислотами образуются соли замещенного аммония. Щелочи, как более сильные основания, вытесняют аммиак и амины из их солей.

3. Горение аминов. Амины являются горючими веществами. Продуктами горения аминов, как и других азотсодержащих органических соединений, являются углекислый газ, вода и свободный азот.

Алкилирование - введение алкильного заместителя в молекулу органического соединения. Типичными алкилирующими агентами являются алкилгалогениды, алкены, эпоксисоединения, спирты, реже альдегиды, кетоны, эфиры, сульфиды, диазоалканы. Катализаторами алкилирования являются минеральные кислоты, кислоты Льюиса а также цеолиты.

Ацилирование. При нагревании с карбоновыми кислотами, их ангидридами, хлорангидридами или сложными эфирами первичные и вторичные амины ацилируются с образованием N-замещенных амидов, соединений с фрагментом -С(О)N<:

Реакция с ангидридами протекает в мягких условиях. Ещё легче реагируют хлорангидриды, реакция проводится в присутствии основания, чтобы связать образующийся HCl.

Первичные и вторичные амины взаимодействуют с азотистой кислотой различным образом. При помощи азотистой кислоты первичные, вторичные и третичные амины отличают друг от друга. Из первичных аминов образуются первичные спирты:

C2H5NH2 + HNO2 → C2H5OH + N2 +H2O

При этом выделяется газ (азот). Это признак того, что в колбе первичный амин.

Вторичные амины образуют с азотистой кислотой желтые, трудно растворимые нитрозамины - соединения, содержащие фрагмент >N-N=O:

(C2H5)2NH + HNO2 → (C2H5)2N-N=O + H2O

Вторичные амины сложно не узнать, по лаборатории распространяется характерный запах нитрозодиметиламина.

Третичные амины при обычной температуре в азотистой кислоте просто растворяются. При нагревании возможна реакция с отщеплением алкильных радикалов.

Способы получения

1.Взаимодействие спиртов с аммиаком при нагревании в присутствии Аl 2 0 3 в качестве катализатора.

2.Взаимодействие алкилгалогенидов (галогеналканов) с аммиаком. Образовавшийся первичный амин может вступать в реакцию с избытком алкилгалогенида и аммиака, в результате чего образуется вторичный амин. Аналогично могут быть получены третичные амины

    Аминокислоты. Классификация, изомерия, номенклатура, получение. Физические и химические свойства. Амфотерные свойства, биполярная структура, изоэлектрическая точка. Полипептиды. Отдельные представители: глицин, аланин, цистеин, цистин, а-аминокапроновая кислота, лизин, глутаминовая кислота.

Аминокислоты - это производные углеводородов, содержащие аминогруппы (-NH 2) и карбоксильные группы –СООН.

Общая формула: (NH 2) f R(COOH) n где m и n чаще всего равны 1 или 2. Таким образом, аминокислоты являются соединениями со смешанными функциями.

Классификация

Изомерия

Изомерия аминокислот, как и гидроксикислот, зависит от изомерии углеродной цепи и от положения аминогруппы по отношению к карбоксилу (a -, β - и γ- аминокислоты и т.д.). Кроме того, все природные аминокислоты, кроме аминоуксусной, содержат асимметрические атомы углерода, поэтому они имеют оптические изомеры (антиподы). Различают D- и L-ряды аминокислот. Следует отметить, что все аминокислоты, входящие в состав белков, относятся к L-ряду.

Номенклатура

Аминокислоты обычно имеют тривиальные названия (например, аминоуксусная кислота называется иначе гликоколом или иицином, а аминопропионовая кислота - аланином и т.д.). Название аминокислоты по систематической номенклатуре складывается из названия соответствующей карбоновой кислоты, производным которой она является, с добавлением в качестве приставки слова амино-. Положение аминогруппы в цепи указывается цифрами.

Способы получения

1.Взаимодействие α-галогенкарбоновых кислот с избытком аммиака. В ходе этих реакций происходит замещение атома галогена в галогенкарбоновых кислотах (об их получении см. § 10.4) на аминогруппу. Вьщеляющийся при этом хлороводород связывается избытком аммиака в хлорид аммония.

2.Гидролиз белков. При гидролизе белков обычно образуются сложные смеси аминокислот, однако с помощью специальных методов из этих смесей можно выделять отдельные чистые аминокислоты.

Физические свойства

Аминокислоты - бесцветные кристаллические вещества, хорошо растворяются в воде, температура плавления 230-300°С. Многие α-аминокислоты имеют сладкий вкус.

Химические свойства

1. Взаимодействие с основаниями и с кислотами:

а) как кислота (участвует карбоксильная группа).

б) как основание (участвует аминогруппа).

2. Взаимодействие внутри молекулы - образование внутренних солей:

а) моноаминомонокарбоновые кислоты (нейтральные кислоты). Водные растворы моноаминомонокарбоновых кислот нейтральны (рН = 7);

б) моноаминодикарбоновые кислоты (кислые аминокислоты). Водные растворы моноаминодикарбоновых кислот имеют рН < 7 (кислая среда), так как в результате образования внутренних солей этих кислот в растворе появляется избыток ионов водорода Н + ;

в) диаминомонокарбоновые кислоты (основные аминокислоты). Водные растворы диаминомонокарбоновых кислот имеют рН > 7 (щелочная среда), так как в результате образования внутренних солей этих кислот в растворе появляется избыток гидроксид-ионов ОН - .

3. Взаимодействие аминокислот друг с другом - образование пептидов.

4. Взаимодействуют со спиртами с образованием сложных эфиров.

Изоэлектрическая точка аминокислот, не содержащих дополнительных NH2- или СООН-групп, представляет собой среднее арифметическое между двумя значениями рК": соответственно для аланина.

Изоэлектрическая точка ряда других аминокислот, содержащих дополнительные кислотные или основные группы (аспарагиновая и глутаминовая кислоты, лизин, аргинин, тирозин и др.), зависит, кроме того, от кислотности или основности радикалов этих аминокислот. Для лизина, например, рI должна вычисляться из полусуммы значений рК" для α- и ε-NН2-групп. Таким образом, в интервале рН от 4,0 до 9,0 почти все аминокислоты существуют преимущественно в форме цвиттерионов с протонированной аминогруппой и диссоциированной карбоксильной группой.

Полипептиды содержат более десяти аминокислотных остатков.

Глицин (аминоуксусная кислота, аминоэтановая кислота) - простейшая алифатическая аминокислота, единственная аминокислота, не имеющая оптических изомеров. Эмпирическая формула C2H5NO2

Аланин (аминопропановая кислота) - алифатическая аминокислота. α-аланин входит в состав многих белков, β-аланин - в состав ряда биологически активных соединений. Химическая формула NH2 -CH -CH3 -COOH. Аланин легко превращается в печени в глюкозу и наоборот. Этот процесс носит название глюкозо-аланинового цикла и является одним из основных путей глюконеогенеза в печени.

Цистеин (α-амино-β-тиопропионовая кислота; 2-амино-3-сульфанилпропановая кислота) - алифатическая серосодержащая аминокислота. Оптически активна, существует в виде L- и D- изомеров. L-Цистеин входит в состав белков и пептидов, играет важную роль в процессах формирования тканей кожи. Имеет значение для дезинтоксикационных процессов. Эмпирическая формула C3H7NO2S.

Цисти́н (хим.) (3,3"-дитио-бис-2-аминопропионовая к-та, дицистеин) - алифатическая серосодержащая аминокислота, бесцветные кристаллы, растворимые в воде.

Цистин - некодируемая аминокислота, представляющая собой продукт окислительной димеризации цистеина, в ходе которой две тиольные группы цистеина образуют дисульфидную связь цистина. Цистин содержит две аминогруппы и две карбоксильных группы и относится к двухосновным диаминокислотам. Эмпирическая формула C6H12N2O4S2

В организме находятся в основном в составе белков.

Аминокапроновая кислота (6-аминогексановая кислота или ε-аминокапроновая кислота) - лекарственное гемостатическое средство, тормозит превращение профибринолизина в фибринолизин. Брутто-

формула C6H13NO2.

Лизин (2,6-диаминогексановая кислота) - алифатическая аминокислота с выраженными свойствами основания; незаменимая аминокислота. Химическая формула: C6H14N2O2

Лизин входит в состав белков. Лизин - это незаменимая аминокислота, входящая в состав практически любых белков, необходима для роста, восстановления тканей, производства антител, гормонов, ферментов, альбуминов.

Глутаминовая кислота (2-аминопентандиовая кислота) - алифатическая аминокислота. В живых организмах глутаминовая кислота в виде аниона глутамата присутствуют в составе белков, ряда низкомолекулярных веществ и в свободном виде. Глутаминовая кислота играет важную роль в азотистом обмене. Химическая формула C5H9N1O4

Глутаминовая кислота также является нейромедиаторной аминокислотой, одним из важных представителей класса «возбуждающих аминокислот». Связывание глутамата со специфическими рецепторами нейронов приводит к возбуждению последних.

    Простые и сложные белки. Пептидная связь. Понятие о первичной, вторичной, третичной и четвертичной структуре белковой молекулы. Типы связей, определяющих пространственное строение молекулы белка (водородные, дисульфидные, ионные, гидрофобные взаимодействия). Физические и химические свойства белков (реакции осаждения, денатурации, цветные реакции). Изоэлектрическая точка. Значение белков.

Белки - это природные высокомолекулярные соединения (биополимеры), структурную основу которых составляют полипептидные цепи, построенные из остатков α-аминокислот.

Простые белки (протеины) - высокомолекулярные органические вещества, состоящие из соединённых в цепочку пептидной связью альфа-аминокислот.

Сложные белки (протеиды) - двухкомпонентные белки, в которых помимо пептидных цепей (простого белка) содержится компонент неаминокислотной природы - простетическая группа.

Пептидная связь - вид амидной связи, возникающей при образовании белков и пептидов в результате взаимодействия α-аминогруппы (-NH2) одной аминокислоты с α-карбоксильной группой (-СООН) другой аминокислоты.

Первичная структура - последовательность аминокислот в полипептидной цепи. Важными особенностями первичной структуры являются консервативные мотивы - сочетания аминокислот, играющих ключевую роль в функциях белка. Консервативные мотивы сохраняются в процессе эволюции видов, по ним часто удаётся предсказать функцию неизвестного белка.

Вторичная структура - локальное упорядочивание фрагмента полипептидной цепи, стабилизированное водородными связями.

Третичная структура - пространственное строение полипептидной цепи (набор пространственных координат составляющих белок атомов). Структурно состоит из элементов вторичной структуры, стабилизированных различными типами взаимодействий, в которых гидрофобные взаимодействия играют важнейшую роль. В стабилизации третичной структуры принимают участие:

ковалентные связи (между двумя остатками цистеина - дисульфидные мостики);

ионные связи между противоположно заряженными боковыми группами аминокислотных остатков;

водородные связи;

гидрофильно-гидрофобные взаимодействия. При взаимодействии с окружающими молекулами воды белковая молекула «стремится» свернуться так, чтобы неполярные боковые группы аминокислот оказались изолированы от водного раствора; на поверхности молекулы оказываются полярные гидрофильные боковые группы.

Четвертичная структура (или субъединичная, доменная) - взаимное расположение нескольких полипептидных цепей в составе единого белкового комплекса. Белковые молекулы, входящие в состав белка с четвертичной структурой, образуются на рибосомах по отдельности и лишь после окончания синтеза образуют общую надмолекулярную структуру. В состав белка с четвертичной структурой могут входить как идентичные, так и различающиеся полипептидные цепочки. В стабилизации четвертичной структуры принимают участие те же типы взаимодействий, что и в стабилизации третичной. Надмолекулярные белковые комплексы могут состоять из десятков молекул.

Физические свойства

Свойства белков так же разнообразны, как и функции, которые они выполняют. Одни белки растворяются в воде,-образуя, как правило, коллоидные растворы (например, белок яйца); другие растворяются в разбавленных растворах солей; третьи нерастворимы (например, белки покровных тканей).

Химические свойства

В радикалах аминокислотных остатков белки содержат различные функциональные группы, которые способны вступать во многие реакции. Белки вступают в реакции окисления-восстановления, этерификации, алкилирования, нитрования, могут образовывать соли как с кислотами, так и с основаниями (белки амфотерны).

Например, альбумин - яичный белок - при температуре 60-70° осаждается из раствора (свертывается), теряя способность растворяться в воде.

Амины вошли в нашу жизнь совершенно неожиданно. Еще недавно это были ядовитые вещества, столкновение с которыми могло привести к смерти. И вот, спустя полтора столетия, мы активно пользуемся синтетическими волокнами, тканями, строительными материалами, красителями, в основе которых лежат амины. Нет, они не стали безопаснее, просто люди смогли их "приручить" и подчинить, извлекая для себя определенную пользу. О том, какую именно, и поговорим далее.

Определение

Для качественного и количественного определение анилина в растворах или соединениях используется реакция с в конце которой на дно пробирки выпадает белый осадок в виде 2,4,6-триброманилина.

Амины в природе

Амины встречаются в природе повсеместно в виде витаминов, гормонов, промежуточных продуктов обмена, есть они и в организме животных и в растениях. Кроме того, при гниении живых организмов также получаются средние амины, которые в жидком состоянии распространяют неприятный запах селедочного рассола. Широко описанный в литературе «трупный яд» появился именно благодаря специфическому амбре аминов.

Длительное время рассматриваемые нами вещества путали с аммиаком из-за похожего запаха. Но в середине девятнадцатого века французский химик Вюрц смог синтезировать метиламин и этиламин и доказать, что при сгорании они выделяют углеводород. Это было принципиальным отличием упомянутых соединений от аммиака.

Получение аминов в промышленных условиях

Так как атом азота в аминах находится в низшей степени окисления, то восстановление азотосодержащих соединений является наиболее простым и доступным способом их получения. Именно он широко распространен в промышленной практике из-за своей дешевизны.

Первый метод представляет собой восстановление нитросоединений. Реакция, во время которой образуется анилин, носит название ученого Зинина и была проведена в первый раз в середине девятнадцатого века. Второй способ заключается в восстановлении амидов при помощи алюмогидрида лития. Из нитрилов тоже можно восстановить первичные амины. Третий вариант - реакции алкилирования, то есть введение алкильных групп в молекулы аммиака.

Применение аминов

Сами по себе, в виде чистых веществ, амины используются мало. Один из редких примеров - полиэтиленполиамин (ПЭПА), который в бытовых условиях облегчает затвердение эпоксидной смолы. В основном первичный, третичный или вторичный амин - это промежуточный продукт в производстве различных органических веществ. Самым востребованным является анилин. Он - основа большой палитры анилиновых красителей. Цвет, который получится в конце, зависит непосредственно от выбранного сырья. Чистый анилин дает синий цвет, а смесь анилина, орто- и пара-толуидина будет красной.

Алифатические амины нужны для получения полиамидов, таких как нейлон и другие Они применяются в машиностроении, а также в производстве канатов, тканей и пленок. Кроме того, алифатические диизоцинаты используются в изготовлении полиуретанов. Из-за своих исключительных свойств (легкость, прочность, эластичность и способность прикрепляться к любым поверхностям) они востребованы в строительстве (монтажная пена, клей) и в обувной промышленности (противоскользящая подошва).

Медицина - еще одна сфера, где применяются амины. Химия помогает синтезировать из них антибиотики группы сульфаниламидов, которые успешно применяют в качестве препаратов второй линии, то есть резервной. На случай, если у бактерий разовьется устойчивость к основным лекарствам.

Вредное воздействие на организм человека

Известно, что амины - это весьма токсичные вещества. Вред здоровью может нанести любое взаимодействие с ними: вдыхание паров, контакт с открытой кожей или попадание соединений внутрь организма. Смерть наступает от нехватки кислорода, так как амины (в частности, анилин) связываются с гемоглобином крови и не дают ему захватывать молекулы кислорода. Тревожными симптомами являются одышка, посинение носогубного треугольника и кончиков пальцев, тахипноэ (учащенное дыхание), тахикардия, потеря сознания.

В случае попадания этих веществ на оголенные участки тела необходимо быстро убрать их ватой, предварительно смоченной в спирте. Делать это надо максимально аккуратно, чтобы не увеличить площадь загрязнения. Если появятся симптомы отравления - обязательно нужно обратиться к врачу.

Алифатические амины - это яд для нервной и сердечно-сосудистой систем. Они могут вызвать угнетение функций печени, ее дистрофию и даже онкологические заболевания мочевого пузыря.

Благодаря наличию у них неподеленных пар электронов на атомах азота. Таким образом амины обладают основными свойствами подобными спиртам, простым эфирам и другим органическим соединениям, которые относятся к группе оснований Льюиса . Однако атомы азота менее электроотрицательны чем атомы кислорода, поэтому амины являются гораздо более сильными основаниями Льюиса относительно протона, чем кислородсодержащие основания, т.е. чем спирты и простые эфиры и их замещенные производные.

Рисунок 1.

Количественная оценка основности аминов

Амины обладают более сильными основными свойствами, чем вода, поэтому и водные растворы аминов проявляют основные свойства. Константы равновесия для кислотно-основного взаимодействия воды и аминов обозначаются $K_B$ и служат количественной характеристикой основных свойств водных растворов аминов.

Рисунок 2.

Концентрация самой воды не входит в эти выражения для $K_B$, поскольку вода в растворах присутствует в значительном избытке (в данном случае рассматриваются измерения относящиеся к разбавленным растворам аминов) и концентрация воды считается постоянной (ее изменением можно принебречь). Вместо величин $K_B$ удобнее пользоваться величинами $K_a$, которые характеризуют кислотность сопряженных ионов алкиламмония:

Рисунок 3.

В данном случае понятие величины $pK_a$ в целом аналогично понятию $pH$, и его легко можно измерить. Значения $pK_a$ (25 $^\circ$C) измеренные в водных растворах для ряда алифатических аминов, приведены в таблице ниже:

Рисунок 4.

Зависимость основности аминов от их строения

Анализируя приведенные выше значения $pK_a$ можно сделать вывод, что, так как всем алифатическим аминам характерны значения $pK_B$ ниже, чем значение $pK_B$ аммиака, то их водные растворы будут проявлять более сильные основные свойства, чем соответствующие растворы аммиака.

    Основность водных растворов аминов уменьшается в ряду:

    $R_2NH > RNH_2 $~$ R_3N$

    И такаое изменение свойств не согласуется с влиянием положительного $I$-эффекта алкильных групп, поскольку растворы третичных аминов показывают более основные чем растворы вторичных аминов. Это обычно объясняют возникновением стерических препятствий при переносе протонов и сольватации в случае растворов третичных аминов.

    В газовой же фазе или в случае индивидуальных веществ основность аминов изменяется в последовательности, правильной с точки зрения рассмотрения электронных эффектов:

    $R_3N > RNH_2 > R_2NH > R_3N$

Основность ариламинов

Ароматическим аминам характерна значительно более низкая основность по сравнению с алифатическими аналогами. Так величина $pK_B$ для анилина равняется 9,37, а кислотность производного от анилина катиона ${C_6H_5NH_3}^+$ ($pK_a$ = 4,63) соответственно гораздо более высокая, чем у алкиламмониевых катионов.

Рисунок 5.

Такое значительное понижение (на шесть порядков) основных свойств анилина относительно метиламина и прочих аминов алифатической природы обусловлено действием отрицательного $I$ эффекта ароматического ядра и положительного $M$ эффекта аминогруппы. Решающую роль в ослаблении основных свойств анилина играт делокализация неподеленных пар электронов атомов азота по бензольным кольцам. Такая делокализация в целом уменьшает способность аминогруппы к связыванию протонов или других акцептоов.

Рисунок 6.

Как видно, неподеленные электронные пары атомов азота в молекулах анилина "смещаются" преимущественно в орто- и пара- положения бензольных колец, что обусловливает эффект орто/пара- ориентации при замещении в молекулах анилина.

Кроме того, в случае наличия заместителей в ароматических системах ариламинов, они оказывают значительное влияние на их основные свойства. Такое влияние поддается как качественной, так и количественной оценке. Заместители с электронодонорными свойствами вызывают повышение основных свойств аминов, а электроноакцепторные заместители наоборот понижают основность ариламинов. Так значение $pK_a$ для различных замещенных производных анилина приведены в таблице ниже:

Рисунок 7.

$N$-Метил и $N,N$-диметил- анилины, проявляют более сильные основаные свойства, чем сам исходный анилин. Так для $C_5H_5N(CH_3)_2$ значение $pK_a$ равняется 5,07, а для $C_5H_5N(C_2H_5)_2$ $pK_a$ равняется 6,57. Анилин почти нацело протонируется (образует хлорид фениламмония) даже в разбавленных растворах кислот, например, в 0,1 $H$ paстворе $HCl$. 4-Нитроанилин же нацело протонируется только в растворах концентрированных кислот - в 50%-ной $H_2SO_4$, а 2,4-динитроанилин ($pK_a$=-4,4) растворяется только в серной кислоте c концентрацией выше 80%. Соли аминов, как правило, легко растворимы в воде даже в тех случаях, когда исходный амин в воде нерастворим. Это широко используется при отделении аминов от примесей неосновного характера. Амин превращают в соль при обработке смеси водным раствором сильной кислоты, отделяют водный слой, из которого после щелочной обработки выделяют чистый свободный амин.