Чем состоит внешний фотоэффект. Фотоэффект

Фотоэффектом называется явление вырывания электронов под действием света из жидких и твердых веществ.

2. Опишите принципиальную схему опыта Столетова. Что такое фототок и фотоэлектроны?

В вакуумную трубку помещали два электрода - катод и анод, которые подключали к источнику напряжения. Тока в цепи не было без освещения катода. При освещении вырываемые светом из катода электроны притягиваются к аноду.

Фототоком называется возникающий в цепи под действием света ток, а фотоэлектронами - вырванные электроны.

3. Сформулируйте три закона фотоэффекта и объясните вольтамперную характеристику при фотоэффекте. Как она будет выглядеть при большей интенсивности света?

Законы фотоэффекта:

1) фототок насыщения пропорционален интенсивности света, который падает на катод.

2) максимальная кинетическая энергия фотоэлектронов не зависит от интенсивности света и прямо пропорциональна его частоте.

3) существует минимальная частота света для каждого вещества, ниже которой фотоэффект не возможен. Она называется красной границей фотоэффекта.

При малых напряжениях только часть фотоэлектронов достигает анода. Чем больше разность потенциалов, тем больше фототок. При некотором значении напряжения он становится максимальным, его называют фототоком напряжения. При большей интенсивности света фототок насыщения будет больше, и график пойдет выше.

4. Запишите и объясните уравнение Эйнштейна для фотоэффекта. Какую величину называют работой выхода?

Энергия фотона идет на сообщение вылетевшему фотоэлектрону кинетической энергии и на совершение работы выхода. Работой выхода называют минимальную работу, которую необходимо совершить для удаления электрона из металла. Красная граница фотоэффекта.

Выска-зал гипотезу: свет излучается и поглощается отдель-ными порциями — квантами (или фотонами). Энер-гия каждого фотона определяется формулой Е = hν , где h — постоянная Планка, равная 6,63 . 10 -34 Дж. с, ν — частота света. Гипотеза Планка объяснила мно-гие явления: в частности, явление фотоэффекта, от-крытого в 1887 г. немецким ученым Генрихом Гер-цем и изученного экспериментально русским ученым А. Г. Столетовым .

Фотоэффект это явление испускания элек-тронов веществом под действием света.

В результате исследований были установлены три закона фотоэффекта:

1. Сила тока насыщения прямо пропорцио-нальна интенсивности светового излучения, па-дающего на поверхность тела.

2. Максимальная кинетическая энергия фото-электронов линейно возрастает с частотой света и не за-висит от его интенсивности.

3. Если частота света меньше некоторой опре-деленной для данного вещества минимальной часто-ты, то фотоэффект не происходит.

Зависимость фототока от напряжения показа-на на рисунке 36.

Теорию фотоэффекта создал немецкий ученый А. Эйнштейн в 1905 г. В основе теории Эйнштейна лежит понятие работы выхода электронов из металла и понятие о квантовом излучении света. По теории Эйнштейна фотоэффект имеет следующее объясне-ние: поглощая квант света, электрон приобретает энергию hv. При вылете из металла энергия каждого электрона уменьшается на определенную величину, которую называют работой выхода (А вых). Работа выхода — это работа, которую необходимо затратить, чтобы удалить электрон из металла. Максимальная энергия электронов после вылета (если нет других потерь) имеет вид: mv 2 /2 = hv — А вых, Это уравне-ние носит название уравнения Эйнштейна .

Если hν < А вых то фотоэффект не происходит. Значит, красная граница фотоэффекта равна ν min = А вых /h

Приборы, в основе принципа действия кото-рых лежит явление фотоэффекта, называют фото-элементами. Простейшим таким прибором является вакуумный фотоэлемент. Недостатками такого фото-элемента являются: слабый ток, малая чувствительность к длинноволновому излучению, сложность в изготовлении, невозможность использования в цепях переменного тока. Применяется в фотометрии для измерения силы света, яркости, освещенности, в ки-но для воспроизведения звука, в фототелеграфах и фототелефонах, в управлении производственными процессами.

Существуют полупроводниковые фотоэлемен-ты, в которых под действием света происходит изме-нение концентрации носителей тока.Они использу-ются при автоматическом управлении электрически-ми цепями (например, в турникетах метро), в цепях переменного тока, в качестве невозобновляемых ис-точников тока в часах, микрокалькуляторах, прохо-дят испытания первые солнечные автомобили, ис-пользуются в солнечных батареях на искусственных спутниках Земли, межпланетных и орбитальных ав-томатических станциях.


С явлением фотоэффекта связаны фотохимиче-ские процессы, протекающие под действием света в фотографических материалах.

Как бы ни был среднестатистический человек далёк в своей повседневной жизни от пройденной некогда школьной программы, она нет-нет да и заставит о себе вспомнить. Именно так происходит, когда речь заходит о явлении внешнего фотоэффекта.

Определение

Фотоэффектом в физике принято считать процесс выравнивания электронов в атомах, молекулах вещества, который возникает и происходит под воздействием света. А внешний фотоэффект - процесс, при котором электроны выбиваются светом с такой силой, что вылетают за внешние пределы своего вещества.

Немного истории и практики

Впервые на этот удивительный факт обратил внимание учёный-физик из Германии в далёком 1887-м году. Изучение открытия было продолжено коллегой Герца, русским физиком Столетовым. А гениальный Эйнштейн разработал теорию фотоэффекта на основе идей С тех пор внешний фотоэффект изучен достаточно глубоко и разносторонне, а полученные знания применяются в полном объёме при разработке и производстве приборов на основе фотоэлементов. Если брать самый элементарный пример, то это автоматические работающие на фотоэлементах.

Механизмы такого типа работают на Однако фотоэлементы, которые используют только внешний фотоэффект, трансформируют энергию, получаемую при излучении, в электрическую не полностью. Поэтому применять их в качестве источников электроэнергии особого смысла нет, чего не скажешь об автоматике. Именно при помощи световых пучков происходит управление электроцепями в автоматических механизмах.

Без преувеличения можно утверждать, что открытие фотоэффекта стало поистине революционным событием в физике. Вот самые значимые его последствия:

  • перед учёными приоткрылась тайна природы света, светового луча;
  • кино из немого стало «говорящим», были придуманы способы озвучки, да и сам факт передачи движущегося изображения тоже стал возможен благодаря фотоэффекту;
  • создание на основе фотоэлектронных приборов таких станков и «умных машин», которые по заданным параметрам без участия человека изготавливают различные детали;
  • множество различных механизмов, основанных на работе фотоэлектронной автоматики.

Таким образом, сам фотоэффект и его применение стали своего рода прорывом в современной технике.

Классификация фотоэлементов

Фотоэффекты делятся на несколько видов в зависимости от своих свойств и выполняемых функций.

  1. Внешний фотоэффект (по-другому - фотоэлектронная эмиссия). Электроны, которые вылетают за пределы вещества при его возникновении, получили название фотоэлектронов. А который они образуют, когда упорядоченно движутся по внешнему электрическому полю, стал называться фототоком.
  2. Внутренний фотоэффект, влияющий на фотопроводимость вещества. Он возникает, когда электроны перераспределяются по полупроводникам и диэлектрикам в зависимости от их энергетического состояния и агрегатного - твёрдого или жидкого. Явление перераспределения происходит под влиянием света. Именно тогда увеличивается электропроводность вещества, т.е. получается эффект фотопроводимости.
  3. Вентильный фотоэффект - переход фотоэлектронов из своих тел в другие твёрдые тела (полупроводники) или жидкие (электролиты).

Внешний фотоэффект лежит в основе работы современных вакуумных фотоэлементов. Они изготавливаются в виде стеклянных колб, у которых внутренняя поверхность частично покрывается тонким слоем металлического напыления. Незначительная толщина слоя обеспечивает малый рабочий выход. Прозрачное окошко колбы пропускает внутрь свет, а находящийся внутри неё анод в виде проволочной петли или диска улавливает фотоэлектроны. Если анод соединить с положительным полюсом батареи, цепь замкнётся, по ней пойдёт электрический ток. Т.е. вакуумные фотоэлементы могут включать или выключать реле.

Комбинируя фотоэлементы и реле, можно создать различные «видящие» автоматы, к примеру, автомат в метро.

Итак, будучи заложен в основу многих производственных процессов, внешний фотоэффект как великое физическое открытие стал залогом успешной работы промышленной автоматики.

5. . 6. .

В 1900 г. немецкий физик Макс Планк высказал гипотезу: свет излучается и поглощается отдельными порциями - квантами (или фотонами). Энергия каждого фотона определяется формулой , где - постоянная Планка, равная , - частота света. Гипотеза Планка объяснила многие явления: в частности, явление фотоэффекта, открытого и 1887 г. немецким ученым Генрихом Герцем и изученного экспириментально русским ученым Александром Григорьевичем Столетовым.

Фотоэффект - это явление испускания электронов веществом под действием света. Если зарядить цинковую пластину, присоединенную к электрометру, отрицательно и освещать ее электрической дутой (рис. 35), то электрометр быстро разрядится.

В результате исследований были установлены следующие эмпирические закономерности:

Количество электронов, вырываемых светом с поверхности металла за 1 с, прямо пропорционально поглощаемой за это время энергии световой волны;

Максимальная кинетическая энергия фото электронов линейно возрастает с частотой света и н зависит от его интенсивности.

Кроме того, были установлены два фундаменталь ных свойства.

Во-первых, безынерционность фотоэффекта: процесс начинается сразу в момент начала освещения.

Во-вторых, наличие характерной для каждого металла минимальной частоты - красной границы фотоэффекта . Эта частота такова, что при фотоэффект не происходит при любой энергии света а если , то фотоэффект начинается даже при малой энергии.

Теорию фотоэффекта создал немецкий ученый А. Эйнштейн в 1905 г. В основе теории Эйнштейна лежит понятие работы выхода электронов из металла и понятие о квантовом излучении света. По теории Эйнштейна фотоэффект имеет следующее объяснение: поглощая квант света, электрон приобретает энергии . При вылете из металла энергия каждого электро на уменьшается на определенную величину, котору называют работой выхода (). Работа выхода это работа, которую необходимо затратить, чтобы удалить электрон из металла. Поэтому максимальная кинетическая энергия электронов после вылета (если нет других потерь) равна: . Следовательно,

.

Это уравнение носит название уравнения Эйнштейна .

Приборы, в основе принципа действия которых лежит явление фотоэффекта, называют фотоэлементами. Простейшим таким прибором является вакуумный фотоэлемент. Недостатками такого фотоэлемента являются слабый ток, малая чувствительность к длинноволновому излучению, сложность в изготовлении, невозможность использования в цепях переменного тока. Применяется в фотометрии для измерения силы света, яркости, освещенности, в кино для воспроизведения звука, в фототелеграфах и фототелефонах, в управлении производственными процессами.

Существуют полупроводниковые фотоэлементы, и которых под действием света происходит изменение концентрации носителей тока. Они используются при автоматическом управлении электрическими цепями (например, в турникетах метро), в цепях переменного тока, в качестве невозобновляемых источников тока в часах, микрокалькуляторах, проходят испытания первые солнечные автомобили, используются в солнечных батареях на искусственных спутниках Земли, межпланетных и орбитальных автоматических станциях.

С явлением фотоэффекта связаны фотохимические процессы, протекающие под действием света в фотографических материалах.

Макс Планк

Квантовые свойства света

В 1900 г. немецкий физик Макс Планк высказал гипотезу: свет излучается и поглощается не непрерывно, а отдельными порциями - квантами (или фотонами). Энергия Е каждого фотона определяется формулой Е = hv , где h - коэффициент пропорциональности — постоянная Планка, v - частота света. Опытным путем вычислили h = 6,63·10 -34 Дж·с. Гипотеза M.Планка объяснила многие явления, а именно, явление фотоэффекта , открытого в 1887 г. немецким ученым Г. Герцем. Далее фотоэффект изучил экспериментально русский ученый Столетов.

Фотоэффект и его законы

Схема опыта Столетова

Фотоэффект - это вырывание электронов из вещества под действием света.
В результате исследований было установлено 3 закона фотоэффекта :
1. Фототок насыщения прямо пропорционален падающему световому потоку.
2. Максимальная кинетическая энергия фотоэлектронов линейно растает с частотой света и зависит от его интенсивности.
3. Для каждого вещества существует максимальная длина волны, при которой фотоэффект еще наблюдается. При больших длинах фотоэффекта нет.

Теорию фотоэффекта создал немецкий ученый А. Эйнштейн в 1905 г. В основе теории Эйнштейна лежит понятие работы выхода электронов из металла и понятие о квантовом излучении света. По теории Эйнштейна фотоэффект имеет следующее объяснение: поглощая квант света, электрон приобретает энергию. При вылете из металла энергия каждого электрона уменьшается на определенную величину, которую называют работой выхода (Авых ) . Работа выхода - это минимальная энергия, которую надо сообщить электрону, чтобы он покинул металл. Она зависит от типа металла и состояния его поверхности. Максимальная энергия электронов после вылета (если нет других потерь) имеет вид:

это уравнение Эйнштейна.

Если hv < Авых , то фотоэффекта не происходит. Предельную частоту v min и предельную длину волны λ max называют красной границей фотоэффекта . Она выражается так: v min =A/h , λ max = λ кр = hc/A , где λ max (λ кр) – максимальная длина волны, при которой фотоэффект еще наблюдается. Красная граница фотоэффекта для разных веществ различна, т.к. А зависит от рода вещества.

Применение фотоэффекта в технике.
Приборы, в основе принципа действия которых лежит явление фотоэффекта, называют фотоэлементами. Простейшим таким прибором является вакуумный фотоэлемент. Недостатками такого фотоэлемента являются: слабый ток, малая чувствительность к длинноволновому излучению, сложность в изготовлении, невозможность использования в цепях переменного тока. Применяется в фотометрии для измерения силы света, яркости, освещенности, в кино для воспроизведения звука, в фототелеграфах и фототелефонах, в управлении производственными процессами.

Существуют полупроводниковые фотоэлементы, в которых под действием света происходит изменение концентрации носителей тока. На этом явлении (внутреннего фотоэффекта) основано устройство фоторезисторов. Они используются при автоматическом управлении электрическими цепями (например, в турникетах метро), в цепях переменного тока, в часах, микрокалькуляторах. Полупроводниковые фотоэлементы используются в солнечных батареях на космических кораблях, в первых автомобилях.