Тепловое расширение твердых тел. Что происходит с водой при нагревании

(объёмным коэффициентом теплового расширения). Для характеристики теплового расширения твёрдых тел дополнительно вводят коэффициент линейного теплового расширения.

Раздел физики изучающий данное свойство называется дилатометрией .

Тепловое расширение тел учитывается при конструировании всех установок, приборов и машин, работающих в переменных температурных условиях.

Основной закон теплового расширения гласит, что тело с линейным размером в соответствующем измерении при увеличении его температуры на расширяется на величину , равную:

,

где - так называемый коэффициент линейного теплового расширения . Аналогичные формулы имеются для расчета изменения площади и объема тела. В приведенном простейшем случае, когда коэффициент теплового расширения не зависит ни от температуры, ни от направления расширения, вещество будет равномерно расширяться по всем направлениям в строгом соответствии с вышеприведенной формулой.

См. также

Ссылки


Wikimedia Foundation . 2010 .

Смотреть что такое "Тепловое расширение" в других словарях:

    Изменение размеров тела в процессе его нагревания. Количественно Т. р. при постоянном давлении р характеризуется изобарным коэфф. расширения (коэфф. объёмного Т. p.) a=1/VX(dV/dT)p, где V объём тела (твёрдого, жидкого или газообразного), Т его… … Физическая энциклопедия

    ТЕПЛОВОЕ РАСШИРЕНИЕ, изменение размеров и формы тела при изменении его температуры. Характеризуется коэффициентами объемного (для твердых тел и линейного) теплового расширения, т.е. изменением объема (линейных размеров) тела при изменении его… … Современная энциклопедия

    Изменение размеров тела при его нагревании; характеризуется коэффициентом объемного расширения, а для твердых тел и коэффициентом линейного расширения, где l изменение линейного размера, ?V объема тела, ?T температуры, индекс указывает на… … Большой Энциклопедический словарь

    тепловое расширение - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN heat expansionthermal expansion … Справочник технического переводчика

    ТЕПЛОВОЕ РАСШИРЕНИЕ - изменение размеров и формы тел при их нагревании. Различие в силах сцепления между молекулами тела в различных его агрегатных (см.) сказывается на величине Т. р. Твёрдые тела, молекулы которых сильно взаимодействуют, расширяются мало, жидкости… … Большая политехническая энциклопедия

    Изменение размеров тела в процессе его нагревания. Количественно Т. р. при постоянном давлении характеризуется изобарным коэффициентом расширения (объёмным коэффициентом Т. р.) Т2 > T1, V исходный объём тела (разность температур T2 T1… … Большая советская энциклопедия

    тепловое расширение - šiluminis plėtimasis statusas T sritis Standartizacija ir metrologija apibrėžtis Kaitinamo kūno matmenų padidėjimas. atitikmenys: angl. heat expansion; thermal expansion vok. thermische Ausdehnung, f; Wärmeausdehnung, f rus. тепловое расширение,… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    тепловое расширение - šiluminis plėtimasis statusas T sritis chemija apibrėžtis Kaitinamo kūno matmenų padidėjimas. atitikmenys: angl. heat expansion; thermal expansion rus. тепловое расширение; термическое расширение … Chemijos terminų aiškinamasis žodynas

    тепловое расширение - šiluminis plėtimasis statusas T sritis fizika atitikmenys: angl. heat expansion; thermal expansion vok. thermische Ausdehnung, f; Wärmeausdehnung, f rus. тепловое расширение, n; термическое расширение, n pranc. dilatation thermique, f; expansion… … Fizikos terminų žodynas

    Изменение размеров тела при его нагревании; характеризуется коэффициентом объёмного расширения αυ = 1/V (ΔV/VT)Ξ, а для твёрдых тел и коэффициентом линейного расширения αл = 1/l(Δl/ΔТ)Ξ, где Δl изменение линейного размера, ΔV объёма тела, ΔТ … … Энциклопедический словарь


Изменение линейных размеров тела при нагревании пропорционально изменению температуры.

Подавляющее большинство веществ при нагревании расширяется. Это легко объяснимо с позиции механической теории теплоты , поскольку при нагревании молекулы или атомы вещества начинают двигаться быстрее. В твердых телах атомы начинают с большей амплитудой колебаться вокруг своего среднего положения в кристаллической решетке, и им требуется больше свободного пространства. В результате тело расширяется. Так же и жидкости и газы, по большей части, расширяются с повышением температуры по причине увеличения скорости теплового движения свободных молекул (см. Закон Бойля—Мариотта , Закон Шарля , Уравнение состояния идеального газа).

Основной закон теплового расширения гласит, что тело с линейным размером L в соответствующем измерении при увеличении его температуры на ΔТ расширяется на величину ΔL , равную:

ΔL = αL ΔT

где α — так называемый коэффициент линейного теплового расширения. Аналогичные формулы имеются для расчета изменения площади и объема тела. В приведенном простейшем случае, когда коэффициент теплового расширения не зависит ни от температуры, ни от направления расширения, вещество будет равномерно расширяться по всем направлениям в строгом соответствии с вышеприведенной формулой.

Для инженеров тепловое расширение — жизненно важное явление. Проектируя стальной мост через реку в городе с континентальным климатом, нельзя не учитывать возможного перепада температур в пределах от —40°C до +40°C в течение года. Такие перепады вызовут изменение общей длины моста вплоть до нескольких метров, и, чтобы мост не вздыбливался летом и не испытывал мощных нагрузок на разрыв зимой, проектировщики составляют мост из отдельных секций, соединяя их специальными термическими буферными сочленениями , которые представляют собой входящие в зацепление, но не соединенные жестко ряды зубьев, которые плотно смыкаются в жару и достаточно широко расходятся в стужу. На длинном мосту может насчитываться довольно много таких буферов.

Однако не все материалы, особенно это касается кристаллических твердых тел, расширяются равномерно по всем направлениям. И далеко не все материалы расширяются одинаково при разных температурах. Самый яркий пример последнего рода — вода. При охлаждении вода сначала сжимается, как и большинство веществ. Однако, начиная с +4°C и до точки замерзания 0°C вода начинает расширяться при охлаждении и сжиматься при нагревании (с точки зрения приведенной выше формулы можно сказать, что в интервале температур от 0°C до +4°C коэффициент теплового расширения воды α принимает отрицательное значение). Именно благодаря этому редкому эффекту земные моря и океаны не промерзают до дна даже в самые сильные морозы: вода холоднее +4°C становится менее плотной, чем более теплая, и всплывает к поверхности, вытесняя ко дну воду с температурой выше +4°C.

То, что лед имеет удельную плотность ниже плотности воды, — еще одно (хотя и не связанное с предыдущим) аномальное свойство воды, которому мы обязаны существованием жизни на нашей планете. Если бы не этот эффект, лед шел бы ко дну рек, озер и океанов, и они, опять же, вымерзли бы до дна, убив всё живое.

Воде присущи поразительные свойства, которые сильно отличают ее от прочих жидкостей. Но это и хорошо, иначе, обладай вода «обычными» свойствами, планета Земля была бы абсолютно другой.

Для подавляющего большинства веществ характерно при нагревании расширяться. Что довольно легко объяснить с позиции механической теории теплоты. Согласно ей, при нагревании атомы и молекулы вещества начинают двигаться быстрее. В твердых телах колебания атомов достигают большей амплитуды, и им необходимо больше свободного пространства. Как результат – происходит расширение тела.

Тот же самый процесс происходит и с жидкостями, и с газами. То есть, за счет повышения температуры увеличивается скорость теплового движения свободных молекул, и тело расширяется. При охлаждении же, соответственно, происходит сжатие тела. Это свойственно практически для всех веществ. За исключением воды.

При охлаждении в интервале от 0 до 4оС вода расширяется. И сжимается – при нагревании. Когда отметка температуры воды достигает 4оС, в этот момент вода имеет максимальную плотность, которая равна 1000 кг/м3. Если температура ниже или выше этой отметки, то плотность всегда немного меньше.

Благодаря этому свойству при понижении температуры воздуха осенью и зимой в глубоких водоемах происходит интересный процесс. Когда вода охлаждается, она опускается ниже, на дно, однако лишь до того момента, пока ее температура не станет +4оС. Именно по этой причине в больших водоемах более холодная вода находится ближе к поверхности, а более теплая – опускается на дно. Так что когда зимой поверхность воды замерзает, более глубокие слои продолжают сохранять температуру 4оС. Благодаря этому моменту рыба может спокойно зимовать в глубинах покрывшихся льдом водоемов.

Влияние расширения воды на климат

Исключительные свойства воды при нагревании серьезным образом влияют на климат Земли, поскольку около 79% поверхности нашей планеты покрыто водой. За счет солнечных лучей происходит нагревание верхних слоев, которые затем опускаются ниже, а на их месте оказываются холодные слои. Те тоже, в свою очередь, постепенно нагреваются и опускаются ближе ко дну.

Таким образом, слои воды непрерывно меняются, что приводит к равномерному прогреванию, пока не достигается температура, соответствующая максимальной плотности. Затем, нагреваясь, верхние слои становятся менее плотными и уже не опускаются вниз, а остаются наверху и просто постепенно становятся теплее. За счет этого процесса огромные толщи воды довольно легко прогреваются солнечными лучами.

Из предыдущих параграфов нам известно, что все вещества состоят из частиц (атомов, молекул). Эти частицы непрерывно хаотически движутся. При нагревании вещества движение его частиц становится более быстрым. При этом увеличиваются расстояния между частицами, что приводит к увеличению размеров тела.

Изменение размеров тела при его нагревании называется тепловым расширением .

Тепловое расширение твердых тел легко подтвердить опытом. Стальной шарик (рис. 87, а, б, в), свободно проходящий через кольцо, после нагревания на спиртовке расширяется и застревает в кольце. После охлаждения шарик вновь свободно проходит через кольцо. Из опыта следует, что размеры твердого тела при нагревании увеличиваются, а при охлаждении - уменьшаются.

Рис. 87

Тепловое расширение различных твердых тел неодинаково .

При тепловом расширении твердых тел появляются огромные силы, которые могут разрушать мосты, изгибать железнодорожные рельсы, разрывать провода. Чтобы этого не случилось, при конструировании того или иного сооружения учитывается фактор теплового расширения. Провода линий электропередачи провисают (рис. 88), чтобы зимой, сокращаясь, они не разорвались.

Рис. 88

Рис. 89

Рельсы на стыках имеют зазор (рис. 89). Несущие детали мостов ставят на катки, способные передвигаться при изменениях длины моста зимой и летом (рис. 90).

Рис. 90

А расширяются ли при нагревании жидкости? Тепловое расширение жидкостей тоже можно подтвердить на опыте. В одинаковые колбы нальем: в одну - воду, а в другую - такой же объем спирта. Колбы закроем пробками с трубками. Начальные уровни воды и спирта в трубках отметим резиновыми кольцами (рис. 91, а). Поставим колбы в емкость с горячей водой. Уровень воды в трубках станет выше (рис. 91, б). Вода и спирт при нагревании расширяются. Но уровень в трубке колбы со спиртом выше. Значит, спирт расширяется больше. Следовательно, тепловое расширение разных жидкостей , как и твердых веществ, неодинаково .

Рис. 91

А испытывают ли тепловое расширение газы? Ответим на вопpoс с помощью опыта. Закроем колбу с воздухом пробкой с изогнутой трубкой. В трубке (рис. 92, а) находится капля жидкости. Достаточно приблизить руки к колбе, как капля начинает перемещаться вправо (рис. 92, б). Это подтверждает тепловое расширение воздуха при его даже незначительном нагревании. Причем, что очень важно, все газы, в отличие от твердых веществ и жидкостей, при нагревании расширяются одинаково .

Рис. 92

Подумайте и ответьте 1. Что называют тепловым расширением тел? 2. Приведите примеры теплового расширения (сжатия) твердых тел, жидкостей, газов. 3. Чем отличается тепловое расширение газов от теплового расширения твердых тел и жидкостей?

Сделайте дома сами

Используя пластиковую бутылку и тонкую трубку для сока, проведите дома опыт по тепловому расширению воздуха и воды. Результаты опыта опишите в тетради.

Интересно знать!

Нельзя после горячего чая сразу пить холодную воду. Резкое изменение температуры часто приводит к порче зубов. Это объясняется тем, что основное вещество зуба - дентин - и покрывающая зуб эмаль при одном и том же изменении температуры расширяются неодинаково.

При нагревании тел растет средняя кинетическая энергия поступательного движения молекул и среднее расстояние между молекулами. Поэтому все вещества при нагревании расширяются, а при охлаждении сжимаются. Различают линейное и объемное расширение.

Изменение одного определенного размера твердого тела при изменениях температуры называетсялинейным расширением (или сжатием).

Где – длина стержня при 0 0 ,

Коэффициент линейного расширения. Размерность = О С -1 .

Длина тела при любой температуре t: ;

При объемном расширении увеличивается объем: , где: – объем тела при 0 0 C.

Объем тела при любой температуре t: , где:

Коэффициент объемного расширения;

Экспериментально установлено, что . Поэтому .

Аналогично для площади поверхности твердого тела: .

В жидкостях есть одно замечательное исключение: вода при нагревании от 0 0 C до +4 0 C сжимается, а при охлаждении от +4 0 C до 0 0 C – расширяется. Коэффициент объемного расширения воды сильно меняется при изменении температуры.

Примеры тепловых расширений:

Вода при замерзании расширяется и разрывает горные породы, металлические трубы и другие технические конструкции.

В автоматике применяются биметаллические пластины, использующие различие коэффициентов линейного расширения каждой из двух пластин. При нагревании биметаллическая пластина теряет устойчивость, нажимает на переключатель, в результате чего исполнительный механизм срабатывает.

Тепловые расширения важно учитывать при прокладывании рельсов, натягивании проводов, сооружении мостов и т.д. Выводы из электроламп и радиоламп производят из материала, у которого коэффициент линейного расширения близок к коэффициенту линейного расширения стекла.

Плавление и кристаллизация.
Диаграмма фазовых состояний

Переход вещества из твердого состояния в жидкоесостояние называется плавлением, а переход из жидкого состояния в твердое –отвердеванием или кристаллизацией. Плавление и отвердевание происходит при одной и той же температуре, называемойтемпературой плавления. Давление практически не влияет на величину температуры плавления. Температуру плавления вещества при нормальном атмосферном давлении называютточкой плавления.

При плавлении твердого тела увеличивается расстояния между частицами, образующими кристаллическую решетку, и происходит разрушение самой решетки. У подавляющего большинства веществ объем при плавлении увеличивается, а при отвердевании уменьшается.

Область, в которой вещество однородно по всем физическим и химическим свойствам, называется фазой состояния этого вещества. Жидкая и твердая фазы вещества при одинаковой температуре могут оставаться в равновесии сколь угодно долгое время (лед и вода при 0 0 C). Поэтому пока все вещество не расплавится, его температура остается неизменной , равной температуре плавления.

Теплотой плавления называется количество теплоты, которое необходимо подвести к телу массой m, находящемуся при температуре плавления , чтобы его расплавить.

Где – удельная теплота плавления.

1 Дж/кг.

На рисунке 34 показаны графики изменения температуры вещества при плавлении и отвердевании. Отрезок (рисунок 34а) выражает количество теплоты, полученное веществом при нагревании в твердом состоянии (от до T ПЛ), отрезок - при плавлении и отрезок - при нагревании в жидком состоянии. Отрезок (рисунок 34б) выражает количество теплоты, отданное веществом при охлаждении в жидком состоянии (от до ), отрезок - при отвердевании и отрезок - при охлаждении в твердом состоянии.

Рисунок 34. Графики изменения температуры вещества при плавлении и отвердевании

Многие твердые вещества обладают запахом. Это доказывает, что твердые вещества могут переходить в газообразное состояние, минуя жидкое. Испарение твердых тел называетсявозгонкой или сублимацией (от латинского “сублимате” - возносить). В пищевой промышленности используется обладающий таким свойством “сухой лед” (СО 2). Возможен и обратный процесс – рост кристаллов из газообразного вещества (лед на окнах, зарастание перемычек ПЗУ).

Для каждого вещества можно составить диаграмму состояний в координатах Р и Т (рисунок 35), на основании которой можно легко определить, в каком состоянии будет находиться это вещество при тех или иных внешних условиях. Каждая точка диаграммы соответствует равновесному состоянию вещества, в которых оно может находиться сколь угодно долго.

Кривая KC – зависимость давления насыщающего пара от температуры. Точка K – критическая точка.

Кривая CA – зависимость от температуры давления насыщающих паров, находящихся в равновесном состоянии с поверхностью твердого тела.

Кривая KC – линия равновесия жидкой и газообразной фаз. Прямая BC – линия равновесия жидкой и твердой фаз. Кривая AC – линия равновесия твердой и газообразной фаз.

Точка C изображает равновесие между всеми тремя фазами, ее называют тройной точкой. У гелия нет тройной точки.

Контрольные вопросы:

1. Расскажите о тепловом расширении твердых тел.

2. Что такое плавление и кристаллизация? Что такое теплота плавления?

3. Что такое возгонка вещества?

4. Расскажите о диаграмме состояний вещества.