Пересечение двух плоскостей онлайн. Построение линии пересечения плоскостей, заданных различными способами

Прямая линия, получаемая при взаимном пересечении двух плоскостей, вполне определяется двумя точками, из которых каждая принадлежит обеим плоскостям. Так, прямая K 1 К 2 (рис. 163), по которой пересекаются между собой плоскость, заданная треугольником АВС, и пл. β, заданная прямыми DE и DF, проходит через точки K 1 и K 2 ; но в этих точках прямые АВ и АС первой плоскости пересекают пл. β т. е. точки К 1 и К 2 принадлежат обеим плоскостям.

Следовательно, в общем случае для построения линии пересечения двух плоскостей надо найти какие-либо две точки, каждая из которых принадлежит обеим плоскостям; эти точки определяют линию пересечения плоскостей.

Для нахождения каждой из таких двух точек обычно приходится выполнять специальные построения. Но если хотя бы одна из пересекающихся плоскостей перпендикулярна к плоскости проекций, то построение проекций линии пересечения упрощается. Начнем с такого случая.

На рис. 164 показано пересечение двух плоскостей, из которых одна (заданная треугольником DEF) расположена перпендикулярно к пл. π 2 . Так как треугольник DEF проецируется на пл.π 2 в виде прямой линии (D"F"), то фронтальная проекция отрезка прямой, по которому пересекаются оба треугольника, представляет собой отрезок К" 1 К" 2 на проекции D"F". Дальнейшее построение ясно из чертежа.


Другой пример дан на рис. 165. Горизонтально-проецирующая плоскость α пересекает плоскость треугольника АВС. Горизонтальная проекция линии пересечения этих плоскостей - отрезок M"N" - определяется на следе α".

Теперь рассмотрим общий случай построения линии пересечения двух плоскостей . Пусть одна из плоскостей, β, задана двумя пересекающимися прямыми, а другая, γ,- двумя параллельными прямыми. Построение показано на рис. 166. В результате взаимного пересечения плоскостей β и γ получена прямая K 1 K 2 . Выразим это записью: β × γ = К 1 K 2 .

Для определения положения точек K 1 и К 2 возьмем две вспомогательные фронтально-проецирующие плоскости (α 1 , и α 2), пересекающие каждую из плоскостей β и γ. При пересечении плоскостей β и γ плоскостью α 1 . получаем прямые с проекциями 1"2", 1"2" и 3"4", 3"4". Эти прямые, расположенные в пл. α 1 , в своем пересечении определяют первую точку, К 1 , линии пересечения плоскостей β и γ.

Получив проекции К" 1 и К" 2 находим на следах и α" 1 и α" 2 проекции К" 1 и К" 2 . Этим определяются проекции К" 1 К" 2 и К" 1 К" 2 искомой прямой пересечения плоскостей β и γ(проекции проведены штрихпунктирной линией).

При построении можно иметь в виду следующее: так как вспомогательные секущие плоскости α 1 и α 2 взаимно параллельны, то, построив проекции 1"2" и 3"4" следует для проекций 5"6" и 7"8" взять по одной точке, хотя бы 5 и 8, так как 5"6"||1"2" и 7"8"||3"4".

В рассмотренном построении были взяты в качестве вспомогательных две фронгально- проецирующие плоскости. Конечно, можно было взять и иные плоскости, например две горизонтальные или одну горизонтальную, другую фронтальную и т. д. Сущность построений от этого не меняется. Однако может встретиться такой случай. Положим, что были взяты в качестве вспомогательных две горизонтальные плоскости и полученные при пересечении ими

плоскостей β и γ горизонтали оказались взаимно параллельными. Но рис. 167 показывает, что β и γ пересекаются между собой, хотя их горизонтали параллельны. Следовательно, получив взаимно параллельные горизонтальные проекции горизонталей АВ и CD и зная, что плоскости при этом не обязательно параллельны, а могут пересекаться (по общей для них горизонтали), надо испытать плоскости β и γ при помощи хотя бы, горизонгально-проецирующей плоскости (см. рис. 167); если прямые, по которым эта вспомогательная плоскость σ, пересечет β и γ, также оказались бы параллельны одна другой, то плоскости β и γ не пересекаются, а параллельны одна другой. На рис. 167 эти прямые пересекаются в точке К, через которую и проходит линия пересечения плоскостей β и γ параллельно прямым ВА и CD.

Если плоскости заданы их следами на плоскостях проекций, то естественно искать точки, определяющие прямую пересечения плоскостей, в точках пересечения одноименных следов плоскостей (рис. 168): прямая, проходящая через эти точки, является общей для обеих плоскостей, т. е. их линией пересечения.

Схему построения линии пересечения двух плоскостей (см. рис. 166) можно, конечно, распространить и на случай задания плоскостей их следами. Здесь роль вспомогательных секущих плоскостей исполняют сами плоскости проекций:

α × π 1 =h" 0α ; β× π 1 =h" 0β ; h" 0α × h" 0β =M;

α × π 2 =f" 0α ; β× π 2 =f" 0β ; f" 0α × f" 0β =N.

Точки пересечения одноименных следов плоскостей являются следами линии пересечения этих плоскостей. Поэтому для построения проекций линии пересечения плоскостей α и β (рис. 168) надо: 1) найти точку М" в пересечении следов h" 0α и h" 0β

и точку N" в пересечении f" 0α и f" 0β , а по ним - проекции М" и N"; 2) провести прямые линии M"N" и M"N",

На рис. 169-171 показаны случаи, когда известно направление линии пересечения. Поэтому достаточно иметь лйшь одну точку от пересечения следов и далее провести через эту точку прямую, исходя из положения плоскостей и их следов.

Вопросы к §§ 22-24

  1. Какое взаимное положение могут занимать две плоскости?
  2. Каков признак параллельности двух плоскостей?
  3. Как взаимно располагаются фронтальные следы двух параллельных между собой фронтально-проецирующих плоскостей?
  4. Как взаимно располагаются горизонтальные следы двух параллельных между собой горизонтально-проецирующих плоскостей?
  5. Как взаимно располагаются одноименные следы двух параллельных между собой плоскостей?
  6. Служит ли признаком взаимного пересечения двух плоскостей пересечение хотя бы одной пары их одноименных следов?
  7. Как установить взаимное положение прямой и Плоскости?
  8. Как строится точка пересечения прямой линии с плоскостью, перпендикулярной к одной или к двум плоскостям проекций?
  9. Какая точка из числа расположенных на общем перпендикуляре к а) пл. π 1 б) пл. π 2 считается видимой соответственно на π 1 , на π 2 ?
  10. Как строится линия пересечения двух плоскостей, из которых хотя бы одна перпендикулярна к пл. π 1 или к пл. π 2 ?
  11. В чем заключается общий способ построения линии пересечения двух плоскостей?

Две плоскости пересекаются друг с другом по прямой линии. Чтобы её построить, необходимо определить две точки, принадлежащие одновременно каждой из заданных плоскостей. Рассмотрим, как это делается, на следующих примерах.

Найдем линию пересечения плоскостей общего положения α и β для случая, когда пл. α задана проекциями треугольника ABC, а пл. β – параллельными прямыми d и e. Решение этой задачи осуществляется путем построения точек L 1 и L 2 , принадлежащих линии пересечения.

Решение

  1. Вводим вспомогательную горизонтальную плоскость γ 1 . Она пересекает α и β по прямым. Фронтальные проекции этих прямых, 1""C"" и 2""3"", совпадают с фронтальным следом пл. γ 1 . Он обозначен на рисунке как f 0 γ 1 и расположен параллельно оси x.
  2. Определяем горизонтальные проекции 1"C" и 2"3" по линиям связи.
  3. Находим горизонтальную проекцию точки L 1 на пересечении прямых 1"C" и 2"3". Фронтальная проекция точки L 1 лежит на фронтальном следе плоскости γ.
  4. Вводим вспомогательную горизонтальную плоскость γ 2 . С помощью построений, аналогичных описанным в пунктах 1, 2, 3, находим проекции точки L 2 .
  5. Через L 1 и L 2 проводим искомую прямую l.

Стоит отметить, что в качестве пл. γ удобно использовать как плоскости уровня, так и проецирующие плоскости.

Найдем линию пересечения плоскостей α и β, заданных следами. Эта задача значительно проще предыдущей. Она не требует введения вспомогательных плоскостей. Их роль выполняют плоскости проекций П 1 и П 2 .

Алгоритм построения

  1. Находим точку L" 1 , расположенную на пересечении горизонтальных следов h 0 α и h 0 β . Точка L"" 1 лежит на оси x. Её положение определяется при помощи линии связи, проведенной из L" 1 .
  2. Находим точку L"" 2 на пересечении фронтальных следов пл. α и β. Точка L" 2 лежит на оси x. Её положение определяется по линии связи, проведенной из L"" 2 .
  3. Проводим прямые l" и l"" через соответствующие проекции точек L 1 и L 2 , как это показано на рисунке.

Таким образом, прямая l, проходящая через точки пересечения следов плоскостей, является искомой.

Пересечение плоскостей треугольников

Рассмотрим построение линии пересечения плоскостей, заданных треугольниками ABC и DEF, и определение их видимости методом конкурирующих точек.

Алгоритм построения

  1. Через прямую DE проводим фронтально-проецирующую плоскость σ: на чертеже обозначен ее след f 0σ . Плоскость σ пересекает треугольник ABC по прямой 35. Отметив точки 3""=A""B""∩f 0σ и 5""=A""С""∩f 0σ , определяем положение (∙)3" и (∙)5" по линиям связи на ΔA"B"C".
  2. Находим горизонтальную проекцию N"=D"E"∩3"5" точки N пересечения прямых DE и 35, которые лежат во вспомогательной плоскости σ. Проекция N"" расположена на фронтальном следе f 0σ на одной линии связи с N".
  3. Через прямую BC проводим фронтально-проецирующую плоскость τ: на чертеже обозначен ее след f 0τ . С помощью построений, аналогичных тем, что описаны в пунктах 1 и 2 алгоритма, находим проекции точки K.

  4. Через N и K проводим искомую прямую NK – линию пересечения ΔABC и ΔDEF.

Определение видимости

Фронтально-конкурирующие точки 4 и 5, принадлежащие ΔDEF и ΔABC соответственно, находятся на одной фронтально-проецирующей прямой, но расположены на разном удалении от плоскости проекций π 2 . Так как (∙)5" находится ближе к наблюдателю, чем (∙)4", то отсек ΔABC с принадлежащей ему (∙)5 является видимым в проекции на пл. π 2 . С противоположной стороны от линии N""K"" видимость треугольников меняется.

Горизонтально-конкурирующие точки 6 и 7, принадлежащие ΔABC и ΔDEF соответственно, находятся на одной горизонтально-проецирующей прямой, но расположены на разном удалении от плоскости проекций π 1 . Так как (∙)6"" находится выше, чем (∙)7"", то отсек ΔABC с принадлежащей ему (∙)6 является видимым в проекции на пл. π 1 . С противоположной стороны от линии N"K" видимость треугольников меняется.

Две плоскости в пространстве могут быть параллельными или пересекающимися, частным случаем пересекающихся плоскостей являются взаимно перпендикулярные плоскости.

Построение линии пересечения плоскостей - одна из основных задач начертательной геометрии, имеющих большое практическое значение. Она относится к так называемым позиционными задачам.

Позиционными называются задачи на определение общих элементов различных сопрягаемых геометрических форм. К ним относятся задачи на принадлежность геометрических элементов и на пересечение геометрических объектов, например, пересечение прямой и плоскости с поверхностью, пересечение двух поверхностей и, в частности, задача на пересечение двух плоскостей.

Линия пересечения двух плоскостей является прямой, одновременно принадлежащей обеим пересекающимся плоскостям . Поэтому для построения линии пересечения плоскостей необходимо определить две точки этой прямой или одну точку и направление линии пересечения.

Рассмотрим частный случай пресечения плоскостей, когда одна из них проецирующая. На рис. 3.6 приведены плоскость общего положения, - заданная треугольником АВС и горизонтально-проецирующая Р. Двумя общими точками, принадлежащими обеим плоскостям, являются точки D и Е, которые и определяют линию пересечения.

Для определения этих точек были найдены точки пересечения сторон АВ и ВС с проецирующей плоскостью. Построение точек D и Е как на пространственном чертеже (рис. 3.6, а), так и на эпюре (рис. 3.6,б) не вызывает затруднений, т.к. основано на разобранном выше собирательном свойстве проецирующих следов плоскостей.

Соединяя одноименные проекции точек D и Е получим проекции линии пересечения плоскости треугольника АВС и плоскости Р. Таким образом, горизонтальная проекция D 1 Е 1 линии пересечения заданных плоскостей совпадает с горизонтальной проекцией проецирующей плоскости Р – с её горизонтальным следом.

Рассмотрим общий случай пересечения когда обе плоскости - общего положения. На рис. 3.7. показаны две плоскости общего положения, заданные треугольником и двумя параллельными прямыми. Для определения двух общих точек линии пересечения плоскостей проводим две вспомогательные (горизонтальные) плоскости уровня R и Т. Вспомогательная плоскость R пересекает заданные плоскости по двум горизонталям h и h 1 , которые в своем пересечении определяют точку 1, общую для плоскостей P и Q, так как они одновременно принадлежат вспомогательной секущей плоскости R. Вторая плоскость – посредник Т также пересекает каждую из заданных плоскостей по горизонталям h 2 и h 3 , которые параллельны первым двум горизонталям. В пересечении горизонталей получим вторую общую точку 2 заданных плоскостей. Соединяя на эпюре (рис. 3.8,б) одноименные проекции этих точек, получим проекции линии пересечения плоскостей.

На рис. 3.8 приведены две плоскости, заданные следами. Общими точками плоскостей являются точки пересечении М и N одноименных следов. Соединяя одноименные проекции этих точек прямой линией, получил проекции линии пересечения плоскостей.

Если точки пересечения одноименных следов находятся вне поля чертежа (см. пример 5), а также в тех случаях, когда плоскости заданы не следами, а другими геометрическими элементами, то для определения линии пересечения плоскостей следует использовать вспомогательные плоскости уровня – горизонтальные или фронтальные. Необходимо отметить, что при построении линии пересечения плоскостей, заданных следами, роль вспомогательных секущих плоскостей выполняют плоскости проекций П 1 и П 2 .

На рис. 3.9 показан случай пересечения двух плоскостей, когда известно направление линии пресечения, т.к. плоскость Р является плоскостью уровня (Р||П 1). Поэтому достаточно иметь лишь одну точку пересечения следов и далее провести через эту точку прямую, исходя из положения плоскостей и их следов. В нашем случае линия пересечения является общей горизонталью NА плоскостей Р и Т.

Прямая в пространстве может быть определена как линия пересечения двух непараллельных плоскостей и, то есть как множество точек, удовлетворяющих системе двух линейных уравнений

(V.5)

Справедливо и обратное утверждение: система двух независимых линейных уравнений вида (V.5) определяет прямую как линию пересечения плоскостей (если они не параллельны). Уравнения системы (V.5) называются общим уравнением прямой в пространстве
.

Пример V .12 . Составить каноническое уравнение прямой, заданной общими уравнениями плоскостей

Решение . Чтобы написать каноническое уравнение прямой или, что тоже самое, уравнение прямой, проходящей через две данные точки, нужно найти координаты каких-либо двух точек прямой. Ими могут служить точки пересечения прямой с какими-нибудь двумя координатными плоскостями, например Oyz и Oxz .

Точка пересечения прямой с плоскостью Oyz имеет абсциссу
. Поэтому, полагая в данной системе уравнений
, получим систему с двумя переменными:

Ее решение
,
вместе с
определяет точку
искомой прямой. Полагая в данной системе уравнений
, получим систему

решение которой
,
вместе с
определяет точку
пересечения прямой с плоскостьюOxz .

Теперь запишем уравнения прямой, проходящей через точки
и
:
или
, где
будет направляющим векто-ром этой прямой.

Пример V .13. Прямая задана каноническим уравнением
. Составить общее уравнение этой прямой.

Решение. Каноническое уравнение прямой можно записать в виде системы двух независимых уравнений:


Получили общее уравнение прямой, которая теперь задана пересечением двух плоскостей, одна из которых
параллельна осиOz (
), а другая
– осиОу (
).

Данную прямую можно представить в виде линии пересечения двух других плоскостей, записав ее каноническое уравнение в виде другой пары независимых уравнений:


Замечание . Одна и та же прямая может быть задана различными системами двух линейных уравнений (то есть пересечением различных плоскостей, так как через одну прямую можно провести бесчисленное множество плоскостей), а также различными каноническими уравнениями (в зависимости от выбора точки на прямой и ее направляющего вектора).

Ненулевой вектор, параллельный прямой линии, будем называть ее направляющим вектором .

Пусть в трехмерном пространстве задана прямая l , проходящая через точку
, и ее направляющий вектор
.

Любой вектор
, где
, лежащий на прямой, коллинеарен с вектором, поэтому их координаты пропорциональны, то есть

. (V.6)

Это уравнение называется каноническим уравнением прямой. В частном случае, когда ﻉ есть плоскость, получаем уравнение прямой на плоскости

. (V.7)

Пример V .14. Найти уравнение прямой, проходящей через две точки
,
.

,

где
,
,
.

Удобно уравнение (V.6) записать в параметрической форме. Так как координаты направляющих векторов параллельных прямых пропорциональны, то, полагая

,

где t – параметр,
.

Расстояние от точки до прямой

Рассмотри двухмерное евклидовое пространство ﻉ с декартовой системой координат. Пусть точка
ﻉ и l ﻉ. Найдем расстояние от этой точки до прямой. Положим
, и прямая l задается уравнением
(рис.V.8).

Расстояние
, вектор
, где
– нормальный вектор прямой l ,
и – коллинеарны, поэтому их координаты пропорциональны, то есть
, следовательно,
,
.

Отсюда
или умножая эти уравнения наA и B соответственно и складывая их, находим
, отсюда

.

(V.8)

определяет расстояние от точки
до прямой
.

Пример V .15. Найти уравнение прямой, проходящей через точку
перпендикулярно прямойl :
и найти расстояние от
до прямойl .

Из рис. V.8 имеем
, а нормальный вектор прямойl
. Из условия перпендикулярности имеем

Так как
, то

. (V.9)

Это и есть уравнение прямой, проходящей через точку
,перпендикулярно прямой
.

Пусть имеем уравнение прямой (V.9), проходящей через точку
, перпендикулярна прямойl :
. Найдем расстояние от точки
до прямойl , используя формулу (V.8).

Для нахождения искомого расстояния достаточно найти уравнение прямой, проходящей через две точки
и точку
, лежащую на прямой в основании перпендикуляра. Пусть
, тогда

Так как
, а вектор
, то

. (V.11)

Поскольку точка
лежит на прямойl , то имеем еще одно равенство
или

Приведем систему к виду, удобному для применения метода Крамера

Ее решение имеет вид

,

. (V.12)

Подставляя (V.12) в (V.10), получаем исходное расстояние.

Пример V .16. В двухмерном пространстве задана точка
и прямая
. Найти расстояние от точки
до прямой; записать уравнение прямой, проходящей через точку
перпендикулярно заданной прямой и найти расстояние от точки
до основания перпендикуляра к исходной прямой.

По формуле (V.8) имеем

Уравнение прямой, содержащей перпендикуляр, найдем как прямую, проходящую через две точки
и
, воспользовавшись формулой (V.11). Так как
, то, с учетом того, что
, а
, имеем

.

Для нахождения координат
имеем систему с учетом того, что точка
лежит на исходной прямой

Следовательно,
,
, отсюда.

Рассмотрим трехмерное евклидовое пространство ﻉ. Пусть точка
ﻉ и плоскость ﻉ. Найдем расстояние от этой точки
до плоскости, заданной уравнением (рис.V.9).

Аналогично двухмерному пространству имеем
и вектор
, а, отсюда

. (V.13)

Уравнение прямой, содержащей перпендикуляр к плоскости , запишем как уравнение прямой, проходящей через две точки
и
, лежащую в плоскости:

. (V.14)

Для нахождения координат точки
к двум любым равенствам формулы (V.14) добавим уравнение

Решая систему трех уравнений (V.14), (V.15), найдем ,,– координаты точки
. Тогда уравнение перпендикуляра запишется в виде

.

Для нахождения расстояния от точки
до плоскости вместо формулой (V.13) воспользуемся

По заданным координатам точек А, В, С, D, E, F (Таблица 2) построить горизонтальную и фронтальную проекции треугольников ∆АBC и ∆DEF, найти линию их пересечения и определить видимость элементов треугольников .

2.2. Пример выполнения задания № 2

Второе задание представляет комплекс задач по темам:

1. Ортогональное проецирование, эпюр Монжа, точка, прямая, плоскость : по известным координатам шести точек А, В, С, D, E, F построить горизонтальную и фронтальную проекции 2-х плоскостей, заданных ∆АBC и ∆DEF ;

2. Плоскости общего и частного положения, пересечение прямой и плоскости, пересечение плоскостей, конкурирующие точки : построить линию пересечения заданных плоскостей и определить видимость их элементов.

Построить горизонтальные и фронтальные проекции заданных плоскостей ∆АBC и ∆DEF (Рисунок 2.1).

Для построения искомой линии пересечения заданных плоскостей необходимо:

1. Выбрать одну из сторон треугольника и построить точку пересечения этой стороны с плоскостью другого треугольника: на Рисунке 2.1 построена точка М пересечения прямой EF c плоскостью ∆АBC ; для этого прямую EF заключают во вспомогательную горизонтально-проецирующую плоскость δ;

2. Построить фронтальную проекцию 1 2 2 2 линии пересечения плоскости δ с плоскостью ∆АBC ;

3. Найти фронтальную проекцию М 2 искомой точки М на пересечении фронтальную проекцию 1 2 2 2 с фронтальной проекцией E 2 F 2 прямой EF ;

4. Найти горизонтальную проекцию М 1 точки М с помощью линии проекционной связи;

5. Аналогично построить вторую точку N , принадлежащую искомой линии пересечения заданных плоскостей: заключить во фронтально-проецирующую плоскость β прямую ВС ; найти линию пересечения 34 плоскости с плоскостью ∆DEF ; на пересечении линии 34 и прямой ВС найти точку N ;

6. Определить с помощью конкурирующих точек, для каждой плоскости отдельно, видимые участки треугольников.

Рисунок 2.1 – Построение линии пересечения двух плоскостей, заданных треугольниками

Рисунок 2.2 – Пример оформления задания 2

Видеопример выполнения задания №2

2.3. Варианты задания 2

Таблица 2– Значения координат точек

Вариант Координаты (x, y, z) вершин треугольников
А В С D E F
1 20; 65; 30 40; 15; 65 80; 30; 35 15; 35; 70 70; 75; 80 35; 0; 0
2 75; 75; 5 60; 20; 60 20; 10; 40 30; 55; 50 90; 50; 35 60; 5; 10
3 0; 30; 75 30; 65; 15 80; 25; 15 45; 65; 75 95; 40; 0 10; 0; 10
4 90; 5; 70 65; 60; 15 15; 15; 20 25; 45; 70 95; 60; 35 65; 10; 0
5 30; 0; 10 70; 15; 15 15; 55; 16 70; 55; 60 5; 30; 60 20; 0; 0
6 20; 25; 0 60; 5; 80 90; 75; 40 0; 60; 60 75; 80; 70 90; 10; 0
7 0; 60; 20 20; 10; 60 85; 10; 20 50; 70; 65 75; 35; 0 10; 0; 5
8 10; 20; 15 55; 70; 5 80; 20; 45 20; 60; 55 100; 35; 20 60; 10; 5
9 0; 50; 10 60; 70; 70 80; 10; 10 20; 10; 70 90; 50; 60 60; 85; 0
10 85; 70; 10 25; 20; 25 90; 10; 60 15; 70; 65 105; 10; 45 70; 0; 0
11 25; 5; 25 60; 60; 5 95; 20; 50 36; 45; 55 105; 45; 60 70; 0; 0
12 95; 30; 65 15; 15; 10 70; 80; 5 35; 70; 70 115; 80; 55 85; 20; 0
13 20; 5; 60 50; 60; 5 90; 15; 30 60; 60; 60 100; 5; 10 25; 10; 0
14 10; 5; 70 80; 20; 25 40; 65; 10 70; 70; 70 0; 35; 60 30; 5; 0
15 20; 45; 55 60; 70; 10 90; 10; 60 20; 0; 10 95; 20; 10 75; 60; 75
16 5; 10; 60 40; 65; 10 70; 5; 40 70; 50; 75 0; 70; 45 15; 0; 5
17 10; 45; 5 90; 5; 10 50; 70; 70 15; 5; 50 95; 15; 65 60; 70; 0
18 65; 20; 70 0; 20; 15 50; 70; 5 15; 60; 55 90; 60; 40 60; 5; 5
19 20; 20; 70 50; 50; 10 70; 10; 30 80; 60; 70 5; 40; 60 25; 0; 10
20 85; 10; 45 70; 50; 0 20; 20; 10 55; 60; 60 0; 0; 60 75; 0; 0
21 0; 70; 60 30; 10; 80 70; 15; 20 60; 50; 70 0; 0; 50 15; 70; 5
22 0; 70; 25 45; 10; 70 90; 30; 20 65; 60; 70 90; 10; 15 15; 0; 15
23 10; 20; 40 50; 60; 10 75; 10; 40 75; 60; 75 5; 70; 55 35; 0; 0
24 10; 10; 10 90; 80; 20 65;10;60 15; 70; 65 100; 70; 40 80; 10; 0
25 60; 65; 10 0; 10; 25 85; 5; 60 20; 65; 60 105; 35; 35 55; 0; 0
26 10; 70; 20 50; 10; 60 90; 25; 10 70; 65; 45 5; 35; 55 25; 0; 50
27 10; 5; 70 40; 70; 10 90; 5; 40 100; 55; 25 25; 65; 80 50; 0; 0
28 0; 50; 5 25; 0; 60 85; 10; 15 50; 50; 50 90; 0; 55 20; 0; 0
29 10; 70; 10 40; 10; 50 80; 20; 20 80; 55; 55 10; 50; 70 20; 0; 0
30 75; 70; 20 10; 35; 10 60; 20; 60 20; 70; 70 100; 60; 50 75; 5; 0