Применение электронно-лучевой трубки. Электростатические электронно-лучевые трубки

Задачи работы

  1. общее знакомство с устройством и принципом действия электронных осциллографов,
  2. определение чувствительности осциллографа,
  3. проведение некоторых измерений в цепи переменного тока при помощи осциллографа.

Общие сведения об устройстве и работе электронного осциллографа

С помощью катода электронно-лучевой трубки осциллографа создается электронный поток, который формируется в трубке в узкий пучок, направленный к экрану. Сфокусированный на экране трубки электронный пучок вызывает в месте падения светящееся пятно, яркость которого зависит от энергии пучка (экран покрыт специальным люминесцирующим составом, светящимся под воздействием пучка электронов). Электронный луч является практически безынерционным, поэтому световое пятно можно практически мгновенно перемещать в любом направлении по экрану, если воздействовать на электронный пучок электрическим полем. Поле создается с помощью двух пар плоскопараллельных пластин, называемых отклоняющими пластинами. Малая инерционность луча обуславливает возможность наблюдения быстропеременных процессов с частотой 10 9 Гц и более.

Рассматривая существующие осциллографы, разнообразные по конструкции и назначению, можно увидеть, что функциональная схема их примерно одинакова. Основными и обязательными узлами должны быть:

Электронно-лучевая трубка для визуального наблюдения исследуемого процесса;

Источники питания для получения необходимых напряжений, подаваемых на электроды трубки;

Устройство для регулировки яркости, фокусировки и смещения луча;

Генератор развертки для перемещения электронного луча (и соответственно, светящегося пятна) по экрану трубки с определенной скоростью;

Усилители (и аттенюаторы), используемые для усиления или ослабления напряжения исследуемого сигнала, если оно недостаточно для заметного отклонения луча на экране трубки или, напротив, слишком велико.

Устройство электронно-лучевой трубки

Прежде всего, рассмотрим устройство электронно-лучевой трубки (рис. 36.1). Обычно это стеклянная колба 3, откачанная до высокого вакуума. В узкой ее части расположен нагреваемый катод 4, из которого вылетают электроны за счет термоэлектронной эмиссии Система цилиндрических электродов 5, 6, 7 фокусирует электроны в узкий пучок 12 и управляет его интенсивностью. Далее следуют две пары отклоняющих пластин 8 и 9 (горизонтальные и вертикальные) и, наконец, экран 10 – дно колбы 3, покрытое люминесцирующим составом, благодаря которому становится видимым след электронного луча.

В состав катода входит вольфрамовая нить – нагреватель 2, расположенная в узкой трубке, торец которой (для уменьшения работы выхода электронов) покрыт слоем окиси бария или стронция и собственно является источником потока электронов.

Процесс формирования электронов в узкий луч с помощью электростатических полей во многом напоминает действие оптических линз на световой луч. Поэтому система электродов 5,6,7 носит название электронно-оптического устройства.

Электрод 5 (модулятор) в виде закрытого цилиндра с узким отверстием находится под небольшим отрицательным потенциалом относительно катода и выполняет функции, аналогичные управляющей сетке электронной лампы. Изменяя величину отрицательного напряжения на модулирующем или управляющем электроде, можно изменять количество электронов, проходящих через его отверстие. Следовательно, с помощью модулирующего электрода можно управлять яркостью луча на экране. Потенциометр, управляющий величиной отрицательного напряжения на модуляторе, выведен на переднюю панель осциллографа с надписью ”яркость”.

Система из двух коаксиальных цилиндров 6 и 7, называемых первым и вторым анодами, служит для ускорения и фокусировки пучка. Электростатическое поле в промежутке между первым и вторым анодами направлено таким образом, что отклоняет расходящиеся траектории электронов снова к оси цилиндра, подобно тому, как оптическая система из двух линз действует на расходящийся пучок света. При этом катод 4 и модулятор 5 составляют первую электронную линзу, а первому и второму анодам соответствует другая электронная линза.

В итоге пучок электронов фокусируется в точке, которая должна лежать в плоскости экрана, что оказывается возможным при соответствующем выборе разности потенциалов между первым и вторым анодами. Ручка потенциометра, регулирующего это напряжение, выведена на переднюю панель осциллограф с надписью ”фокус”.

При попадании электронного луча на экран на нем образуется резко очерченное светящееся пятно (соответствующее сечению пучка), яркость которого зависит от количества и скорости электронов в пучке. Большая часть энергии пучка при бомбардировке экрана превращается в тепловую. Во избежание прожога люминесцирующего покрытия не допустима большая яркость при неподвижном электронном луче. Отклонение луча осуществляется с помощью двух пар плоскопараллельных пластин 8 и 9, расположенных под прямым углом друг к другу.

При наличии разности потенциалов на пластинах одной пары однородное электрическое поле между ними отклоняет траекторию пучка электронов в зависимости от величины и знака этого поля. Расчеты показывают, что величина отклонения луча на экране трубки D (в миллиметрах) связана с напряжением на пластинах U D и напряжением на втором аноде Ua 2 (в вольтах) следующим образом:

(36.1),


Федеральное агентство по образованию

Кузбасская государственная педагогическая академия

Кафедра автоматизации производственных процессов

Реферат

по радиотехнике

Тема: Осциллографическая электронно-лучевая трубка. Передающие телевизионные трубки

    Электронно-лучевые индикаторы

1.1 Основные параметры ЭЛТ

1.2 Осциллографические электронные трубки

II. Передающие телевизионные трубки

2.1 Передающие телевизионные трубки с накоплением зарядов

2.1.1 Иконоскоп

2.1.2 Супериконоскоп

2.1.3 Ортикон

2.1.4 Суперортикон

2.1.5 Видикон

Список используемой литературы

I . Электронно-лучевые индикаторы

Электронно-лучевым называют электронный электровакуумный прибор, в котором используется поток электронов, сконцентрированный в форме луча или пучка лучей.

Электронно-лучевые приборы, имеющие форму трубки, вытянутой в направлении луча, называют электронно-лучевыми трубками (ЭЛТ). Источником электронов в ЭЛТ подогревный катод. Эмитированные катодом электроны собираются в узкий луч электрическим или магнитным полем специальных электродов или катушек с током. Электронный луч фокусируется на экране, для изготовления которого внутреннюю сторону стеклянного баллона трубки покрывают люминофором – веществом, способным светиться при бомбардировке его электронами. Положением видимого сквозь стекло баллона пятна на экране можно управлять, отклоняя поток электронов путём воздействия на него электрического или магнитного поля специальных (отклоняющих) электродов или катушек с током. Если формирование электронного луча и управление им осуществляется с помощью электростатических полей, то такой прибор называют ЭЛТ с электростатическим управлением. Если для этих целей используют не только электростатические, но и магнитные поля, то прибор называют ЭЛТ с магнитным управлением.

Схематическое изображение электронно-лучевой трубки






Рис.1

На рис.1 схематически показано устройство ЭЛТ. Элементы трубки размещены в стеклянном баллоне, из которого откачан воздух до остаточного давления 1-10 мкПа. Кроме электронной пушки, включающей в себя катод 1, сетку 2 и ускоряющий электрод 3, в электронной лучевой трубке есть магнитная отклоняющая и фокусирующая система 5 и отклоняющие электроды 4, позволяющие направить пучок электронов в различные точки внутренней поверхности экрана 9, имеющего металлическую анодную сетку 8 с проводящим слоем люминофора. Напряжение на сетку анода с люминофором подается через высоковольтный ввод 7. Пучок электронов, падающих с большой скоростью на люминофор, вызывает его свечение, и на экране можно видеть светящееся изображение пучка электронов.

Современные фокусирующие системы обеспечивают диаметр светящегося пятна на экране менее 0,1 мм. Вся система электродов, формирующих электронный луч, крепится на держателях (траверсах) и образует единое устройство, называемое электронам прожектором. Для управления положением светящегося пятна на экране применяют две пары специальных электродов - отклоняющих пластин, расположенных взаимно перпендикулярно. Изменяя разность потенциалов между пластинами каждой пары, можно изменять положение электронного луча во взаимно перпендикулярных плоскостях благодаря воздействию электростатических полей отклоняющих пластин на электроны. Специальные генераторы в осциллографах и телевизорах формируют линейно изменяющееся напряжение, которое подаётся на отклоняющие электроды и создает развертку изображения по вертикали и горизонтали. В результате на экране получают двумерную картину изображения.

ЭЛТ с магнитным управлением содержит такой же электронный прожектор, как и ЭЛТ с электростатическим управлением, за исключением второго анода. Вместо него применяют короткую катушку (фокусирующую) с током, надеваемую на горловину трубки вблизи первого анода. Неоднородное магнитное поле фокусирующей катушки, воздействуя на электроны, выполняет роль второго анода в трубке с электростатической фокусировкой.

Отклоняющая система в трубке с магнитным управлением выполняется в виде двух пар отклоняющих катушек, также размещаемых на горловине трубки между фокусирующей катушкой и экраном. Магнитные поля двух пар катушек взаимно перпендикулярны, что позволяет управлять положением электронного луча при изменении тока в катушках. Магнитные отклоняющие системы используют в трубках с высоким анодным потенциалом, необходимым для получения большой яркости свечения экрана, в частности в телевизионных приемных трубках - кинескопах. Поскольку магнитная отклоняющая система размещается вне баллона ЭЛТ, ее удобно вращать вокруг оси ЭЛТ, меняя положение осей на экране, что важно в некоторых применениях, например в радиолокационных индикаторах. С другой стороны, магнитная отклоняющая система инерционнее электростатической и не позволяет перемещать луч с частотой более 10-20 кГц. Поэтому в осциллографах - приборах, предназначенных для наблюдения на экране ЭЛТ изменений электрических сигналов во времени,- применяют трубки с электростатическим управлением. Заметим, что существуют ЭЛТ с электростатической фокусировкой и магнитным отклонением.

1.1 Основные параметры ЭЛТ

Цвет свечения экрана может быть |различным в зависимости от состава люминофора. Чаще других используют экраны с белым, зеленым, синим, фиолетовым цветом свечения, однако имеются ЭЛТ с желтым, голубым, красным, оранжевым цветом.

Послесвечение - время, необходимое для спадания яркости свечения от номинальной до первоначальной после прекращения электронной бомбардировки экрана. Послесвечение делится на пять групп: от очень короткого (менее 10 -5 с) до очень длительного (более 16 с).

Разрешающая способность - ширина светящейся сфокусированной линии на экране или минимальный диаметр светящегося пятна.

Яркость свечения экрана - сила света, испускаемого 1 м 2 экрана в направлении, нормальном к его поверхности. Чувствительность к отклонению - отношение смещения пятна па экране к значению отклоняющего напряжения или напряженности магнитного поля.

Существуют разные виды ЭЛТ: осциллографические ЭЛТ, приёмные телевизионные трубки, передающие телевизионные трубки и проч. В своей работе я рассмотрю устройство и принцип действия осциллографической ЭЛТ и передающих телевизионных трубок.

1.2 Осциллографические электронно-лучевые трубки

Осциллографические трубки предназначены для получения изображения электрических сигналов на экране. Обычно это ЭЛТ с электростатическим управлением, в которых для наблюдения применяют зеленый цвет свечения экрана, а для фотографирования - голубой или синий. Для наблюдения быстропротекающих периодических процессов служат ЭЛТ с повышенной яркостью свечения и коротким послесвечением (не более 0,01 с). Медленные периодические и однократные быстро протекающие процессы лучше наблюдать на экранах ЭЛТ с длительным послесвечением (0,1-16 с). Осциллографические ЭЛТ выпускаются с круглым и прямоугольным экранами размерами от 14x14 до 254 мм в диаметре. Для одновременного наблюдения двух процессов и более выпускаются многолучевые ЭЛТ, в которых смонтированы два (или более) независимых электронных прожектора с соответствующими отклоняющими системами. Прожекторы смонтированы так, что и оси пересекаются в центре экрана.

II . Передающие телевизионные трубки

Передающие телевизионные трубки и системы преобразуют изображения объектов передачи в электрические сигналы. По способу преобразования изображений объектов передачи в электрические сигналы, передающие телевизионные трубки и системы подразделяются на трубки и системы мгновенного действия и трубки с накоплением зарядов.

В первом случае величина электрического сигнала определяется тем световым потоком, который в данный момент времени падает или на катод фотоэлемента, или на элементарный участок фотокатода передающей телевизионной трубки. Во втором случае происходит преобразование световой энергии в электрические заряды на накопительном элементе (мишени) передающей телевизионной трубки в течении периода кадровой развертки. Распределение электрических зарядов на мишени соответствует распределению света и тени по поверхности передаваемого объекта. Совокупность электрических зарядов на мишени называется потенциальным рельефом. Электронный луч периодически обегает все элементарные участки мишени и списывает потенциальный рельеф. При этом на нагрузочном сопротивлении выделяется напряжение полезного сигнала. Трубки второго типа, т.е. с накопленной световой энергией, имеют больший КПД, чем трубки первого типа, поэтому они широко применяются в телевидении. Именно поэтому подробней я рассмотрю устройство и виды трубок второго типа.

      Передающие телевизионные трубки с накоплением зарядов

        Иконоскоп

Важнейшей частью иконоскопа (рис.1а) является мозаика, которая состоит из тонкого листка слюда толщиной 0,025 мм. На одну сторону слюды нанесено большое число изолированных друг от друга мелких серебряных зёрен 4, окисленных и обработанных в парах цезия.

Используемая как для передачи, так и для приема электронно-лучевая трубка снабжена устройством, испускающим электронный луч, а также устройствами, обеспечивающими управление его интенсивностью, фокусировку и отклонение. Здесь рассказывается обо всех этих операциях. В заключение профессор Радиоль заглядывает в будущее телевидения.

Итак, мой любезный Незнайкин, я должен объяснить тебе устройство и принципы работы электронно-лучевой трубки, так как она применяется в телевизионных передатчиках и приемниках.

Электронно-лучевая трубка существовала задолго до появления телевидения. Она использовалась в осциллографах - измерительных приборах, позволяющих наглядно увидеть формы электрических напряжений.

Электронная пушка

Электронно-лучевая трубка имеет катод обычно с косвенным накалом, который испускает электроны (рис. 176). Последние притягиваются анодом, имеющим положительный относительно катода потенциал. Интенсивностью потока электронов управляет потенциал другого электрода, установленного между катодом и анодом. Этот электрод носит название модулятора, имеет форму цилиндра, частично охватывающего катод, а в его дне есть отверстие, через которое проходят электроны.

Рис. 176. Пушка электронно-лучевой трубки, испускающая пучок электронов. Я - нить накала; К - катод; М - модулятор; А - анод.

Я чувствую, что ты сейчас испытываешь определенное недовольство мною. "Почему он не сказал мне, что это просто-напросто триод?!" - возможно, думаешь ты. На самом деле, модулятор играет ту же самую роль, что и сетка в триоде. А все эти три электрода вместе образуют электршпую пушку. Почему? Стреляет она чем-нибудь? Да. В аноде проделано отверстие, через которое пролетает значительная часть притягиваемых анодом электронов.

В передатчике электронный луч «просматривает» различные элементы изображения, пробегая по светочувствительной поверхности, на которую проецируется это изображение. В приемнике луч создает изображение на флуоресцирующем экране.

Чуть позже мы более подробно рассмотрим эти функции. А сейчас я должен изложить тебе две основные проблемы: как концентрируется луч электронов и как заставляют его отклоняться, чтобы обеспечить просмотр всех элементов изображения.

Способы фокусировки

Фокусировка необходима для того, чтобы сечение луча в месте его соприкосновения с экраном не превышало размеров элемента изображения. Луч в этой точке соприкосновения обычно называют пятном.

Для того чтобы пятно было достаточно малым, луч нужно пропустить через электронную линзу. Так называют устройство, использующее электрические или магнитные поля и воздействующее на электронный луч так же, как двояковыпуклая стеклянная линза на световые лучи.

Рис. 177. Благодаря воздействию нескольких анодов электронный луч фокусируется в одну точку на экране.

Рис. 178. Фокусировка электронного луча обеспечивается магнитным полем, создаваемым катушкой, к которой приложено постоянное напряжение.

Рис. 179. Отклонение электронного луча переменным полем.

Рис. 180. Две пары пластин позволяют отклонять электронный луч в вертикальном и горизонтальном направлениях.

Рис. 181. Синусоида на экране электронного осциллографа, в котором на горизонтальные отклоняющие пластины приложено переменное напряжение, а на вертикальные пластины - линейное напряжение такой же частоты.

Фокусировка осуществляется электрическими силовыми линиями, для чего за первым анодом устанавливают второй (также снабженный отверстием), на который подают более высокий потенциал. Можно также установить за вторым анодом третий и подать на него еще более высокий потенциал, чем на второй. Разность потенциалов между анодами, через которые проходит электронный луч, воздействует на электроны наподобие электрических силовых линий, идущих от одного анода к другому. И это воздействие имеет тенденцию направить к оси луча все электроны, траектория которых отклонилась (рис. 177).

Потенциалы анодов в используемых в телевидении электронно-лучевых трубках часто достигают нескольких десятков тысяч вольт. Величина же анодных токов, наоборот, очень небольшая.

Из сказанного ты должен понять, что мощность, какую нужно отдать в трубке, не представляет собой ничего сверхъестественного.

Сфокусировать луч можно также воздействием на поток электронов магнитным полем, создаваемым протекающим по катушке током (рис. 178).

Отклонение электрическими полями

Итак, нам удалось настолько сфокусировать луч, что его пятно на экране имеет крохотные размеры. Однако неподвижное пятно в центре экрана не дает никакой практической пользы. Нужно заставить пятно пробегать по чередующимся строкам обоих полукадров, как это объяснил тебе Любознайкин во время вашей последней беседы.

Как обеспечить отклонение пятна, во-первых, по горизонтали, чтобы оно быстро пробегало по строкам, и, во-вторых, по вертикали, чтобы пятно переходило с одной нечетной строки на следующую нечетную или же с одной четной на следующую четную? Кроме того, нужно обеспечить очень быстрый возврат с конца одной строки к началу той, которую пятну предстоит пробежать. Когда же пятно закончит последнюю строку одного полукадра, оно должно очень быстро подняться кверху и занять исходное положение в начале первой строки следующего полукадра.

В этом случае отклонение электронного луча может также осуществляться изменением электрических или магнитных полей. Позднее ты узнаешь, какую форму должны иметь управляющие разверткой напряжения или токи и как их получить. А сейчас посмотрим, как устроены трубки, отклонение в которых осуществляется электрическими полями.

Эти поля создают путем приложения разности потенциалов между двумя металлическими пластинами, расположенными по одну и другую сторону от луча. Можно сказать, что пластины представляют собой обкладки конденсатора. Ставшая положительной обкладка притягивает электроны, а ставшая отрицательной - их отталкивает (рис. 179).

Ты легко поймешь, что две расположенные горизонтально пластины определяют отклонение электронного луча но вертикали. Для перемещения луча по горизонтали нужно использовать две пластины, расположенные вертикально (рис. 180).

В осциллографах как раз и используют этот способ отклонения; там устанавливают как горизонтальные, так и вертикальные пластины. На первые подают периодические напряжения, форму которых мужно определить, - эти напряжения отклоняют пятно по вертикали. На вертикальные пластины подают напряжение, отклоняющее пятно по горизонтали с постоянной скоростью и почти мгновенно возвращающее его к началу строки.

При этом появляющаяся на экране кривая отображает форму изменения изучаемого напряжения. По мере перемещения пятна слева направо рассматриваемое напряжение заставляет его подниматься или опускаться в зависимости от своих мгновенных значений. Если ты будешь таким образом рассматривать напряжение сети переменного тока, то на экране электронно-лучевой трубки увидишь красивую синусоидальную кривую (рис. 181).

Флуоресценция экрана

А теперь пора тебе объяснить, что экран электронно-лучевой трубки изнутри покрыт слоем флуоресцентного вещества. Так называют вещество, которое под воздействием ударов электронов светится. Чем мощнее эти удары, тем выше вызываемая ими яркость.

Не путай флуоресценцию с фосфоресценцией. Последняя присуща веществу, которое под воздействием дневного света или света электрических ламп само становится светящимся. Именно так светятся ночью стрелки твоего будильника.

Телевизоры оснащают электронно-лучевыми трубками, экран которых сделан из полупрозрачного флуоресцентного слоя. Под воздействием электронных лучей этот слой становится светящимся. В черно-белых телевизорах производимый таким образом свет - белый. Что же касается цветных телевизоров, то в них флуоресцентный слой состоит из 1500000 элементов, одна треть которых излучает красный свет, другая треть светится синим светом, а последняя треть - зеленым.

Рис. 182. Под воздействием магнитного поля магнита (тонкие стрелки) электроны отклоняются в перпендикулярном ему направлении (толстые стрелки).

Рис. 183. Катушки, создающие магнитные поля, обеспечивают отклонение электронного луча.

Рис. 184. По мере увеличения угла отклонения трубку делают короче.

Рис. 185. Размещение проводящего слоя, необходимого для отвода с экрана во внешнюю цепь первичных и вторичных электронов.

Позднее тебе объяснят, как комбинации этих трех цветов позволяют получить всю гамму самых разнообразных цветов, в том числе и белый свет.

Магнитное отклонение

Вернемся к проблеме отклонения электронного луча. Я описал тебе способ, основанный на изменении электрических полей. В настоящее время в телевизионных электронно-лучевых трубках используется отклонение луча магнитными полями. Эти поля создают электромагниты, расположенные вне трубки.

Напомню, что магнитные силовые линии стремятся отклонить электроны в направлении, которое образует с ними прямой угол. Следовательно, если полюсы намагничивания расположены слева и справа от электронного луча, то силовые линии идут в горизонтальном направлении и отклоняют электроны сверху вниз.

А полюсы, расположенные сверху и снизу от трубки, смещают электронный луч по горизонтали (рис. 182). Пропуская по таким магнитам переменные токи соответствующей формы, заставляют луч совершать требующийся путь полной развертки изображений.

Итак, как ты видишь, электронно-лучевая трубка окружена немалым количеством катушек. Вокруг нее находится соленоид, обеспечивающий фокусировку электронного луча. А отклонением этого луча управляют две пары катушек: в одной витки расположены в горизонтальной плоскости, а в другой - в вертикальной, Первая пара катушек отклоняет электроны справа налево, вторая -г вверх и вниз (рис. 183).

Угол отклонения луча от оси трубки раньше не превышал , полное же отклонение луча составляло 90°. В наши дни изготовляют трубки с полным отклонением луча до 110°. Благодаря этому длина трубки уменьшилась, что позволило изготовить телевизоры меньшего объема, так как глубина их футляра уменьшилась (рис. 184).

Возвращение электронов

Ты, может быть, спрашиваешь себя, каков конечный путь электронов, ударившихся о флуоресцентный слой экрана. Так знай, что этот путь заканчивается ударом, вызывающим испускание вторичных электронов. Совершенно недопустимо, чтобы экран накапливал первичные и вторичные электроны, так как их масса создала бы отрицательный заряд, когорый стал бы отталкивать другие излучаемые электронной пушкой электроны.

Для предотвращения такого накопления электронов внешние стенки колбы от экрана до анода покрывают проводящим слоем. Таким образом, приходящие на флуоресцентный слой электроны притягиваются анодом, имеющим очень высокий положительный потенциал, и поглощаются (рис. 185).

Контакт анода выводят на боковую стенку трубки, тогда как все другие электроды соединяют со штырьками цоколя, расположенного на противоположном относительно экрана конце трубки.

Существует ли опасность взрыва?

Еще один вопрос, несомненно, рождается в твоем мозгу. Ты, должно быть, спрашиваешь себя, с какой силой атмосфера давит на эти большие вакуумные трубки, устанавливаемые в телевизорах. Ты знаешь, что на уровне земной поверхности атмосферное давление составляет около . Площадь же экрана, диагональ которого равна 61 см, составляет . Это означает, что воздух давит на этот экран с силой . Если учесть остальную часть поверхности колбы в ее конической и цилиндрической частях, то можно сказать, что трубка выдерживает общее давление, превышающее 39-103 Н.

Выпуклые участки трубки легче, чем плоские, выдерживают высокое давление. Поэтому раньше трубки изготовляли с весьма выпуклым экраном. В наши дни научились делать экраны достаточно прочными, чтобы даже при плоской форме они успешно выдерживали давление воздуха. Поэтому риск взрыва, направленного внутрь, исключен. Я умышленно сказал взрыва, направленного внутрь, а не просто взрыва, так как если разрывается электронно-лучевая трубка, то ее осколки устремляются внутрь.

В старых телевизорах из предосторожности перед экраном устанавливали толстое защитное стекло. В настоящее время обходятся без него.

Плоский экран будущего

Ты молод, Незнайкин. Перед тобой открывается будущее; ты увидишь эволюцию и прогресс электроники во всех областях. В телевидении, несомненно, наступит такой день, когда электронно-лучевая трубка в телевизоре будет заменена плоским экраном. Такой экран будут вешать на стену как простую картину. А все схемы электрической части телевизора благодаря микроминиатюризации будут размещены в раме этой картины.

Использование интегральных схем даст возможность до минимума сократить размер многочисленных схем, составляющих электрическую часть телевизора. Применение интегральных схем уже получило широкое распространение.

И наконец, если все ручки и кнопки управления телевизором придется размещать на окружающей экран раме, то наиболее вероятно, что для регулировки телевизора будут применяться дистанционные устройства управления. Не поднимаясь со своего кресла, телезритель сможет переключать телевизор с одной программы на другую, изменять яркость и контрастность изображения и громкость звукового сопровождения. Для этой цели у него под рукой будет маленькая коробочка, излучающая электромагнитные волны или ультразвуки, которые заставят телевизор произвести все заданные переключения и регулировки. Впрочем, такие устройства уже существуют, но пока не получили широкого распространения...

А теперь вернемся из будущего в настоящее. Я предоставляю Любознайкину возможность объяснить тебе, как электронно-лучевые трубки в настоящее время используются для передачи и приема телевизионных изображений.

На экран электронно-лучевой трубки люминофоры наносятся в виде крошечных точек, причем эти точки собираются по три; в каждой тройке, или триаде, имеются одна красная, одна синяя и одна зеленая точки. На рисунке я вам показал несколько таких триад. Всего на экране трубки имеется около 500 тысяч триад. Картина, которую вы видите в телевизоре, вся состоит из светящихся точек. Там, где детали изображения более светлые, на точки попадает больше электронов, и они светятся ярче. На темные места изображения электронов попадает, соответственно, меньше. Если в цветном изображении имеется белая деталь, то повсюду в пределах этой детали все три точки в каждой триаде светятся с одинаковой яркостью. Наоборот, если в цветном изображении имеется деталь красного цвета, то повсюду в пределах этой детали светятся только красные точки каждой триады, а зеленые и синие не светятся совсем.

Вы поняли, что значит создать цветное изображение на экране телевизора? Это, во-первых, заставить электроны попадать в нужные места, то есть на те люминофорные точки, которые должны светиться, и не попадать в другие места, то есть на те точки, которые светиться не должны. Во-вторых, электроны должны попадать в нужные места в нужное время. Ведь изображение на экране постоянно меняется, и там, где в какой-то момент, например, было ярко-оранжевое пятно, через мгновение должно появиться, скажем, темно-фиолетовое. Наконец, в-третьих, в нужное место и в нужное время должно попадать нужное количество электронов. Больше - туда, где свечение должно быть ярче, и меньше - туда, где свечение темнее.

Поскольку на экране размещается почти полтора миллиона люминофорных точек, задача на первый взгляд представляется исключительно сложной. На самом деле - ничего сложного. Прежде всего в электронно-лучевой трубке имеется не один, а три отдельных нагретых катода. Точно таких, как в обычной электронной лампе. Каждый катод испускает электроны, и вокруг него создается электронное облачко. Около каждого катода находятся сетка и анод. Количество электронов, прошедших сквозь сетку к аноду, зависит от напряжения на сетке. Пока все происходит, как в обычной трехэлектродной лампе - триоде.

Какое отличие? Анод здесь не сплошной, а с отверстием в самом центре. Поэтому большинство электронов, движущихся от катода к аноду, не задерживается на аноде - они вылетают через отверстие наружу в виде круглого пучка. Конструкция, состоящая из катода, сетки и анода, так и называется: электронная пушка. Пушка как бы выстреливает пучком электронов, а количество электронов в пучке зависит от напряжения на сетке.

Нацелены электронные пушки так, чтобы пучок, вылетающий из первой пушки, всегда попадал только в красные точки триад, пучок из второй пушки - только в зеленые точки, а пучок из третьей пушки - только в синие точки. Таким образом решается одна из трех задач по образованию цветного изображения. Подавая нужные напряжения на сетки каждой из трех пушек, устанавливают нужные интенсивности красного, зеленого и синего свечения, а значит, обеспечивают нужную окраску каждой детали изображения.

Применение электронно-лучевой трубки

Электронно-лучевые трубки применяются в осциллографах для измерения напряжения и фазовых углов, анализа формы кривой силы тока или напряжения и т. д. Эти трубки используются в телевизионных и радиолокационных установках.

Электронно-лучевые трубки бывают разных типов. По способу получения электронного луча они делятся на трубки с холодным и накаленным катодом. Трубки с холодным катодом используются сравнительно редко, так как для их работы требуются очень высокие напряжения (30-70 кВ). Трубки с накаленным катодом имеют широкое применение. Эти трубки по способу управления электронным лучом также разделяются на два вида: электростатические и магнитные. В электростатических трубках управление электронным лучом осуществляется с помощью электрического поля, а в магнитных - с помощью магнитного поля.

Электронно-лучевые трубки с электростатическим управлением применяются в осциллографах и бывают чрезвычайно разнообразны по конструктивному выполнению. Учащихся достаточно ознакомить с принципом устройства такой трубки, содержащей основные типовые элементы. Этим целям отвечает трубка типа 13ЛОЗ7, которая представлена на таблице с некоторыми упрощениями.

Электронно-лучевая трубка представляет собой хорошо вакуумированный стеклянный баллон, внутри которого находятся электроды. Широкий торец трубки - экран - с внутренней стороны покрывается флуоресцирующим веществом. Вещество экрана светится при ударах электронов. Источником электронов служит катод косвенного накала. Катод состоит из нити накала 7, вставленной в тонкую фарфоровую трубочку (изолятор), на которую надет цилиндр 6 с оксидным покрытием торца (катод), благодаря чему достигается излучение электронов только в одном направлении. Вылетевшие из катода электроны устремляются к анодам 4 и 3, имеющим довольно высокий потенциал относительно катода (несколько сотен вольт). Для придания пучку электронов формы луча и его фокусировки на экране пучок проходит через ряд электродов. Однако следует обратить внимание уча-щихся только на три электрода: модулятор (управляющий цилиндр) 5, первый анод 4 и второй анод 3. Модулятор представляет собой трубчатый электрод, на который подается отрицательный потенциал относительно катода. Благодаря этому проходящий через модулятор электронный пучок будет стягиваться в узкий пучок (луч) и направляться электрическим полем через отверстие в аноде в сторону экрана. Повышая или понижая потенциал управляющего электрода, можно регулировать коли-чество электронов в луче, т. е. интенсивность (яркость) свечения экрана. С помощью анодов не только создается ускоряющее поле (обеспечивается разгон электронов), но, изменяя потенциал одного из них, можно более точно фокусировать электронный луч на экране и получить большую резкость светящейся точки. Обычно фокусировку осуществляют путем изменения потенциала первого анода, который называется фокусирующим.

Электронный луч, выйдя из отверстия в аноде, проходит между двумя парами отклоняющих пластин 1,2 и попадает на экран, вызывая его свечение.

Подавая напряжение на отклоняющие пластины, можно вызвать отклонение луча и смещение светящегося пятна от центра экрана. Величина и направление смещения зависят от напряжения, поданного на пластины, и полярности пластин. На таблице показан случай, когда напряжение подано только на вертикальные пластины 2. При указанной полярности пластин смещение электронного луча под действием сил электрического поля происходит вправо. Если подать напряжение на го-ризонтальные пластины 1, то смещение луча будет происходить в вертикальном направлении.

В нижней части таблицы приведен способ управления лучом с помощью магнитного поля, созданного двумя взаимно перпендикулярными катушками (каждая катушка разделена на две секции), оси которых имеют вертикальное и горизонтальное направления. На таблице показан случай, когда в горизонтальной катушке ток отсутствует и вертикальная катушка обеспечивает смещение луча только в горизонтальном направлении.

Магнитное поле горизонтальной катушки вызывает смещение луча в вертикальном направлении. Совместное действие магнитных полей двух катушек обеспечивает движение луча по всему экрану.

Магнитные трубки применяются в телевизорах.