Тепловой режим земной поверхности и воздуха. Тепловой режим атмосферы

Тепловой режим земной поверхности. Солнечная радиации, приходящая на Землю, нагревает главным образом ее поверхность. Термическое состояние земной поверхности является поэтому основным источником нагревания и охлаждения нижних слоев атмосферы.

Условия нагревания земной поверхности зависят от ее физических свойств. Прежде всего существуют резкие различия в нагревании поверхности суши и воды. На суше тепло распространяется в глубину преимущественно путем мало эффективной молекулярной теплопроводности. Суточные колебания температуры на поверхности суши распространяются, в связи с этим, только на глубину до 1 м, а годовые - до 10-20 м. В водной поверхности температура распространяется в глубину главным образом путем перемешивания водных масс; молекулярная теплопроводность имеет ничтожное значение. Кроме того здесь играет роль более глубокое проникновение радиации в воду, а также более высокая теплоемкость воды по сравнению с сушей. Поэтому суточные и годовые колебания температуры распространяются в воде на большую глубину, чем на суше: суточные - на десятки метров, годовые - на сотни метров. В результате тепло, приходящее и уходящее на земную поверхность, распространяется в более тонком слое суши, чем водной поверхности. Это значит, что суточные и годовые колебания температуры на поверхности суши должны быть гораздо больше, чем на поверхности воды. Так как от земной поверхности нагревается воздух, то при одинаковом значении солнечной радиации летом и днем температура воздуха над сушей будет выше, чем над морем, а зимой и ночью наоборот.

Неоднородность поверхности суши также сказывается на условиях ее нагревания. Растительный покров днем препятствует сильному нагреванию почвы, а ночью уменьшает ее охлаждение. Снежный покров предохраняет зимой почву от чрезмерной потери тепла. Суточные амплитуды температуры под растительным покровом будут, таким образом, уменьшены. Совместное действие растительного покрова летом и снежного зимой уменьшает годовую амплитуду температуры по сравнению с обнаженной поверхностью.

Крайние пределы колебания температуры поверхности суши следующие. В пустынях субтропиков температура может подняться до +80°, на снежной поверхности Антарктиды может опуститься до -90°.

На водной поверхности моменты наступления максимума и минимума температуры в суточном и годовом ходе смещаются по сравнению с сушей. Суточный максимум наступает около 15-16 час, минимум через 2-3 час после восхода Солнца. Годовой максимум температуры поверхности океана приходится в северном полушарии на август, годовой минимум - на февраль. Максимальная наблюдавшаяся температура поверхности океана около 27°, поверхности внутренних водных бассейнов 45°; минимальная температура соответственно -2 и -13°.

Тепловой режим атмосферы. Изменение температуры воздуха определяется несколькими причинами: солнечной и земной радиацией, молекулярной теплопроводностью, испарением и конденсацией водяных паров, адиабатическими изменениями и переносом тепла с массой воздуха.

Для нижних слоев атмосферы непосредственное поглощение солнечной радиации имеет небольшое значение, гораздо существеннее поглощение ими длинноволновой земной радиации. Молекулярной теплопроводностью нагревается воздух, непосредственно прилегающий к земной поверхности. При испарении воды затрачивается тепло, а следовательно, воздух охлаждается, при конденсации водяных паров тепло выделяется, и воздух нагревается.

Большое влияние на распределение температуры воздуха имеет адиабатическое изменение ее, т. е. изменение температуры без теплообмена с окружающим воздухом. Поднимающийся воздух расширяется; на расширение затрачивается работа, что приводит к понижению температуры. При опускании воздуха происходит обратный процесс. Сухой или не насыщенный водяными парами воздух адиабатически охлаждается каждые 100 м подъема на 1°. Воздух, насыщенный водяными парами, охлаждается при подъеме на меньшую величину (в среднем на 0°,6 на 100 м подъема), так как в этом случае происходит конденсация водяных паров, которая сопровождается выделением тепла.

Особенно большое влияние на тепловой режим атмосферы имеет перенос тепла вместе с массой воздуха. В результате общей циркуляции атмосферы все время происходит как вертикальное, так и горизонтальное перемещение воздушных масс, захватывающее всю толщу тропосферы и проникающее даже в нижнюю стратосферу. Первое называется конвекцией, второе - адвекцией. Это основные процессы, определяющие фактическое распределение температуры воздуха над поверхностью суши и моря и на разных высотах. Адиабатические процессы являются лишь физическим следствием изменения температуры в движущемся по законам циркуляции атмосферы воздухе. О роли переноса тепла вместе с массой воздуха можно судить по тому, что количество тепла, получаемое воздухом в результате конвекции, в 4000 раз больше, чем тепла, получаемого при излучении с земной поверхности, и в 500000 раз больше,

чем тепла, получаемого молекулярной теплопроводностью. На основании уравнения состояния газов температура с высотой должна понижаться. Однако при особых условиях нагревания и охлаждения воздуха температура может повышаться с высотой. Такое явление называется инверсией температуры. Инверсия возникает при сильном охлаждении земной поверхности в результате излучения, при стекании холодного воздуха в понижения, при нисходящем движении воздуха в свободной атмосфере, т. е. над уровнем трения. Температурные инверсии играют большую роль в циркуляции атмосферы и сказываются на погоде и климате. Суточный и годовой ход температуры воздуха зависят от хода солнечной радиации. Однако наступление максимума и минимума температуры запаздывает по отношению к максимуму и минимуму солнечной радиации. После полудня приток тепла от Солнца начинает уменьшаться, но температура воздуха некоторое время продолжает подниматься, потому что убыль солнечной радиации восполняется излучением тепла с земной поверхности. Ночью понижение температуры продолжается до восхода Солнца в связи с земным излучением тепла (рис. 11). Аналогичная закономерность относится и к годовому ходу температуры. Амплитуда колебаний температуры воздуха меньше, чем земной поверхности, причем с удалением от поверхности амплитуда колебаний естественно уменьшается, а моменты максимума и минимума температуры все больше ибольше запаздывают. Величина суточных колебаний температуры уменьшается с увеличением широты места и с увеличением облачности и осадков. Над водной поверхностью амплитуда значительно меньше, чем над сушей.

Если бы земная поверхность была однородна, а атмосфера и гидросфера неподвижны, то распределение тепла по поверхности определялось бы только поступлением солнечной радиации, и температура воздуха постепенно убывала бы от экватора к полюсам, оставаясь одинаковой на каждой параллели. Такая температура называется солярной.

Действительные температуры зависят от характера поверхности и межширотного обмена тепла и существенно отличаются от солярных Средние годовые температуры на разных широтах в градусах показаны в табл. 1.


Наглядное представление о распределении температуры воздуха на земной поверхности показывают карты изотерм - линий, соединяющих пункты с одинаковыми температурами (рис. 12, 13).

Как видно из карт, изотермы сильно отклоняются от параллелей, что объясняется рядом причин: неодинаковым нагреванием суши и моря, наличием теплых и холодных морских течений, влиянием общей циркуляции атмосферы (например, западным переносом в умеренных широтах), влиянием рельефа (барьерное влияние на движение воздуха горных систем, скопление холодного воздуха в межгорных котловинах и др.), величиной альбедо (например, большим альбедо снежно-ледовой поверхности Антарктиды и Гренландии).

Абсолютный максимум температуры воздуха на Земле наблюдается в Африке (Триполи) - около +58°. Абсолютный минимум отмечен в Антарктиде (-88°).

На основании распределения изотерм выделяют тепловые пояса на земной поверхности. Тропики и полярные круги, ограничивающие пояса с резкой сменой режима освещенности (см. гл. 1), являются в первом приближении и границами смены теплового режима. Так как действительные температуры воздуха отличаются от солярных, то за тепловые пояса принимают характерные изотермы. Такими изотермами являются: годовая 20° (граница резко выраженных сезонов года и малой амплитуды температуры), самого теплого месяца 10° (граница распространения леса) и самого теплого месяца 0° (граница вечного мороза).

Между годовыми изотермами 20° обоих полушарий расположен жаркий пояс, между годовой изотермой 20° и изотермой самого

Post Views: 873

Непосредственно солнечными лучами нагревается земная поверхность, а уже от нее – атмосфера. Поверхность получающая и отдающая теплоту, называется деятельной поверхностью . В температурном режиме поверхности выделяется суточный и годовой ход температур. Суточный ход температур поверхности изменение температуры поверхности в течение суток. Суточный ход температур поверхности суши (сухой и лишенной растительности) характеризуется одним максимумом около 13 ч и одним минимумом – перед восходом Солнца. Дневные максимумы температуры поверхности суши могут достигать 80 0 С в субтропиках и около 60 0 С в умеренных широтах.

Разница между максимальной и минимальной суточной температурой поверхности называется суточной амплитудой температуры. Суточная амплитуда температуры может летом достигать 40 0 С, зимой амплитуда суточных температур наименьшая – до 10 0 С.

Годовой ход температуры поверхности – изменение среднемесячной температуры поверхности в течение года, обусловлен ходом солнечной радиации и зависит от широты места. В умеренных широтах максимум температур поверхности суши наблюдается в июле, минимум – в январе; на океане максимумы и минимумы запаздывают на месяц.

Годовая амплитуда температур поверхности равна разнице между максимальными и минимальными среднемесячными температурами; возрастает с увеличением широты места, что объясняется возрастанием колебаний величины солнечной радиации. Наибольших значений годовая амплитуда температур достигает на континентах; на океанах и морских берегах значительно меньше. Самая маленькая годовая амплитуда температур отмечается в экваториальных широтах (2-3 0), самая большая – в субарктических широтах на материках (более 60 0).

Тепловой режим атмосферы. Атмосферный воздух незначительно нагревается непосредственно солнечными лучами. Т.к. воздушная оболочка свободно пропускает солнечные лучи. Атмосфера нагревается от подстилающей поверхности. Теплота в атмосферу передается конвекцией, адвекцией и конденсацией водяного пара. Слои воздуха, нагреваясь от почвы, становятся более легкими и поднимаются вверх, а более холодный, следовательно, более тяжелый воздух опускается вниз. В результате тепловой конвекции идет прогревание высоких слоев воздуха. Второй процесс передачи теплоты – адвекция – горизонтальный перенос воздуха. Роль адвекции заключается в передаче теплоты из низких в высокие широты, в зимний сезон тепло передается от океанов к материкам. Конденсация водяного пара – важный процесс, осуществляющий передачу теплоты высоким слоям атмосферы – при испарении теплота забирается от испаряющей поверхности, при конденсации в атмосфере эта теплота выделяется.



С высотой температура убывает. Изменение температуры воздуха на единицу расстояния называется вертикальным температурным градиентом, в среднем он равен 0,6 0 на 100 м. Вместе с тем ход этого убывания в разных слоях тропосферы разный: 0,3-0,4 0 до высоты 1,5 км; 0,5-0,6 – между высотами 1,5-6 км; 0,65-0,75 – от 6 до 9 км и 0,5-0,2 – от 9 до 12 км. В приземном слое (толщиной 2 м) градиенты, при пересчете на 100 м, исчисляются сотнями градусов. В поднимающемся воздухе температура изменяется адиабатически. Адиабатический процесс – процесс изменения температуры воздуха при его вертикальном движении без теплообмена с окружающей средой (в одной массе, без обмена теплом с другими средами).

В описанном распределении температуры по вертикали нередко наблюдаются исключения. Бывает, что верхние слои воздуха теплее нижних, прилегающих к земле. Явление это называется температурной инверсией (увеличение температуры с высотой). Чаще всего инверсия является следствием сильного охлаждения приземного слоя воздуха, вызванного сильным охлаждением земной поверхности в ясные тихие ночи, преимущественно зимой. При пересеченном рельефе холодные массы воздуха медленно стекают вдоль склонов и застаиваются в котловинах, впадинах и т.п. Инверсии могут образовываться и при движении воздушных масс из теплых областей в холодные, так как при натекании подогретого воздуха на холодную подстилающую поверхность его нижние слои заметно охлаждаются (инверсия сжатия).

Ее величину и изменение на той поверхности, которая непосредственно нагревается солнечными лучами. Нагреваясь, эта поверхность, передает тепло (в длинноволновом диапазоне) как ниже лежащим слоям, так и атмосфере. Саму поверхность называют деятельной поверхностью .

Максимальное значение всех элементов теплового баланса наблюдается в околополуденные часы. Исключение представляет максимум теплообмена в почве, приходящийся на утренние часы. Максимальные амплитуды суточного хода составляющих теплового баланса отмечается летом, минимальные – зимой.

В суточном ходе температуры поверхности, сухой и лишенной растительности, в ясный день максимум наступает после 14 часов, а минимум – около момента восхода Солнца. Нарушать суточный ход температуры может облачность, вызывая смещение максимума и минимума. Большое влияние на ход температуры оказывает влажность и растительность поверхности.

Дневные максимумы температуры поверхности могут составлять +80 о С и более. Суточные колебания достигают 40 о. Величины экстремальных значений и амплитуды температур зависят от широты места, времени года, облачности, тепловых свойств поверхности, ее цвета, шероховатости, характера растительного покрова, ориентировки склонов (экспозиции).

Распространение тепла от деятельной поверхности зависит от состава подстилающего субстрата, и будет определяться его теплоемкостью и теплопроводностью. На поверхности материков подстилающим субстратом являются почвогрунты, в океанах (морях) – вода.

Почвогрунты в общем обладают меньшей чем вода теплоемкостью, и большей теплопроводностью. Поэтому они нагреваются и остывают быстрее, чем вода.

На передачу тепла от слоя к слою затрачивается время, и моменты наступления максимальных и минимальных значений температуры в течение суток запаздывает на каждые 10 см примерно на 3 часа. Чем глубже слой, тем меньше тепла он получает и тем слабее в нем колебания температур. Амплитуда суточных колебаний температур с глубиной уменьшается на каждые 15 см в 2 раза. На глубине в среднем около 1 м суточные колебания температуры почвы «затухают». Слой в котором они прекращаются называется слоем постоянной суточной температуры.

Чем больше период колебаний температур, тем глубже они распространяются. Так в средних широтах слой постоянной годовой температуры находится на глубине 19- 20 м, в высоких – на глубине 25 м, а в тропических широтах, где годовые амплитуды температур невелики – на глубине 5- 10 м. Моменты наступления максимальных и минимальных температур в течение года запаздывают в среднем на 20-30 суток на каждый метр.

Температура в слое постоянной годовой температуры близка к средней годовой температуре воздуха над поверхностью.

Почва – компонент климатической системы, являющийся наиболее активным аккумулятором солнечного тепла, поступающего на поверхность земли.

Суточный ход температуры подстилающей поверхности имеет один максимум и один минимум. Минимум наступает около восхода солнца, максимум – в послеполуденные часы. Фаза суточного хода и его суточная амплитуда зависят от времени года, состояния подстилающей поверхности, количества и осадков, а также, от местоположения станций, типа почвы и ее механического состава.

По механическому составу почвы делятся на песчаные, супесчаные и суглинистые, различающиеся между собой по теплоемкости, температуропроводности и генетическим свойствам (в частности, по цвету). Темные почвы поглощают больше солнечной радиации и, следовательно, сильнее прогреваются, чем светлые. Песчаные и супесчаные почвы, характеризующиеся меньшей , теплее суглинистых.

В годовом ходе температуры подстилающей поверхности прослеживается простая периодичность с минимумом в зимнее время и максимумом летом. На большей части территории России наиболее высокая температура почвы наблюдается в июле, на Дальнем Востоке в прибрежной полосе Охотского моря, на и – в июле – августе, на юге Приморского края – в августе.

Максимальные температуры подстилающей поверхности в течение большей части года характеризуют экстремальное термическое состояние почвы, и лишь для самых холодных месяцев – поверхности .

Условиями погоды, благоприятными для достижения подстилающей поверхностью максимальных температур, являются: малооблачная погода, когда максимален приток солнечной радиации; малые скорости ветра или штиль, поскольку повышение скорости ветра способствует увеличению испарения влаги из почвы; малое количество осадков, так как сухая почва характеризуется меньшей тепло- и температуропроводностью. Кроме того, в сухой почве меньше затраты тепла на испарение. Таким образом, абсолютные максимумы температуры обычно отмечаются в наиболее ясные солнечные дни на сухой почве и, обычно, в послеполуденные часы.

Географическое распределение средних из абсолютных годовых максимумов температуры подстилающей поверхности сходно с распределением изогеотерм средних месячных температур поверхности почвы в летние месяцы. Изогеотермы имеют в основном широтное направление. Влияние морей на температуру поверхности почвы проявляется в том, что на западном побережье Японского и , на Сахалине и Камчатке широтное направление изогеотерм нарушается и становится близким к меридиональному (повторяет очертания береговой линии). На Европейской части России значения среднего из абсолютных годовых максимумов температуры подстилающей поверхности изменяются от 30–35°С на побережье северных морей до 60–62°С на юге Ростовской области, в Краснодарском и Ставропольском краях, в Республике Калмыкия и Республике Дагестан. В районе средние из абсолютных годовых максимумов температуры поверхности почвы на 3–5°С ниже, чем в близлежащих равнинных территориях, что связано с влиянием возвышенностей на увеличение осадков в данном районе и увлажнение почвы. Равнинные территории, закрытые возвышенностями от преобладающих ветров, отличаются пониженным количеством осадков и меньшими скоростями ветра, а, следовательно, и повышенными значениями экстремальных температур поверхности почвы.

Наиболее быстрый рост экстремальных температур с севера на юг происходит в зоне перехода от лесной и зон к зоне , что связано с уменьшением осадков в степной зоне и с изменением состава почв. На юге при общем низком уровне содержания влаги в почве одним и тем же изменениям влажности почвы соответствуют более значительные различия в температуре почв, отличающихся между собой по механическому составу.

Так же резко происходит уменьшение средних из абсолютных годовых максимумов температуры подстилающей поверхности с юга на север в северных районах Европейской части России, при переходе от лесной зоны к зонам и тундры – районам избыточного увлажнения. Северные районы Европейской части России, благодаря активной циклонической деятельности, кроме всего прочего, отличаются от южных районов повышенным количеством облачности, что резко снижает приход солнечной радиации к земной поверхности.

На Азиатской части России наиболее низкие из средних абсолютных максимумов имеют место на островах и севере (12–19°С). По мере продвижения к югу происходит увеличение экстремальных температур, причем на севере Европейской и Азиатской частей России это увеличение происходит более резко, чем на остальной территории. В районах с минимальным количеством осадков (например, районы междуречья Лены и Алдана) выделяются очаги повышенных значений экстремальных температур. Так как районы отличаются очень сложным , то экстремальные температуры поверхности почвы для станций, находящихся в различных формах рельефа (горные районы, котловины, низменности, долины крупных сибирских рек), сильно отличаются. Наибольших значений средние из абсолютных годовых максимумов температуры подстилающей поверхности достигают на юге Азиатской части России (кроме прибрежных районов). На юге Приморского края средние из абсолютных годовых максимумов ниже чем в континентальных районах, расположенных на той же широте. Здесь их значения достигают 55–59°С.

Минимальные температуры подстилающей поверхности наблюдаются также при вполне определенных условиях: в наиболее холодные ночи, в часы близкие к восходу солнца, при антициклональном режиме погоды, когда малая облачность благоприятствует максимальному эффективному излучению.

Распределение изогеотерм средних из абсолютных годовых минимумов температуры подстилающей поверхности аналогично распределению изотерм минимальных температур воздуха. На большей части территории России, кроме южных и северных районов, изогеотермы средних из абсолютных годовых минимумов температуры подстилающей поверхности принимают меридиональную направленность (убывают с запада на восток). На Европейской части России средние из абсолютных годовых минимумов температуры подстилающей поверхности изменяются от – 25°С в западных и южных районах до –40…–45°С в восточных и, особенно, северо-восточных районах (Тиманский кряж и Большеземельская тундра). Самые высокие значения средних из абсолютных годовых минимумов температуры (–16…–17°С) имеют место на Черноморском побережье. На большей части Азиатской части России средние из абсолютных годовых минимумов варьируют в пределах –45…–55°С. Столь незначительное и достаточно равномерное распределение температуры на огромной территории связано с однотипностью условий образования минимальных температур в районах, подверженных влиянию сибирского .

В районах Восточной Сибири со сложным рельефом, особенно в Республике Саха (Якутия), наряду с радиационными факторами, существенное влияние на уменьшение минимальных температур оказывают особенности рельефа. Здесь в сложных условиях горной страны во впадинах и котловинах создаются особенно благоприятные условия для выхолаживания подстилающей поверхности. В Республике Саха (Якутия) имеют место наиболее низкие значения средних из абсолютных годовых минимумов температуры подстилающей поверхности на территории России (до –57…–60°С).

На побережье арктических морей, в связи с развитием здесь активной зимней циклонической деятельности, минимальные температуры выше, чем во внутренних районах. Изогеотермы имеют почти широтное направление, и понижение средних из абсолютных годовых минимумов с севера на юг происходит довольно быстро.

На побережье изогеотермы повторяют очертания берегов. Влияние Алеутского минимума проявляется в повышении средних из абсолютных годовых минимумов в прибрежной зоне по сравнению с внутренними районами, особенно на южном побережье Приморского края и на Сахалине. Средние из абсолютных годовых минимумов составляют здесь –25…–30°С.

От величины отрицательных температур воздуха в холодный период года зависит промерзание почвы. Важнейшим фактором, препятствующим промерзанию почвы, является наличие снежного покрова. Такие его характеристики, как время образования, мощность, продолжительность залегания определяют глубину промерзания почвы. Позднее установление снежного покрова способствует большему промерзанию почвы, так как в первую половину зимы интенсивность промерзания почвы наибольшая и, наоборот, раннее установление снежного покрова препятствует значительному промерзанию почвы. Влияние толщины снежного покрова наиболее сильно проявляется в районах с низкой температурой воздуха.

При одних и тех же глубина промерзания зависит от типа почвы, ее механического состава и влажности.

Например, в северных районах Западной Сибири при низкой и мощном снежном покрове глубина промерзания почвы меньше, чем в более южных и теплых районах с малым . Своеобразная картина имеет место в районах с неустойчивым снежным покровом (южные районы Европейской части России), где он может способствовать увеличению глубины промерзания почвы. Это связано с тем, что при частой смене морозов и оттепелей на поверхности тонкого снежного покрова образуется ледяная корка, коэффициент теплопроводности которой в несколько раз больше теплопроводности снега и воды. Почва при наличии такой корки значительно быстрее охлаждается и промерзает. Уменьшению глубины промерзания почвы способствует наличие растительного покрова, так как он задерживает и накапливает снег.

Транскрипт

1 ТЕПЛОВОЙ РЕЖИМ АТМОСФЕРЫ и земной поверхности

2 Тепловой баланс земной поверхности на земную поверхность поступают суммарная радиация и встречное излучение атмосферы. Они поглощаются поверхностью, т. е. идут на нагревание верхних слоев почвы и воды. В то же время земная поверхность излучает сама и при этом теряет тепло.

3 Земная поверхность (деятельная поверхность, подстилающая поверхность) т. е. поверхность почвы или воды (растительного, снежного, ледяного покрова), непрерывно разными способами получает и теряет тепло. Через земную поверхность тепло передается вверх в атмосферу и вниз в почву или в воду. В любой промежуток времени от земной поверхности уходит вверх и вниз в совокупности такое же количество тепла, какое она за это время получает сверху и снизу. Если бы было иначе, не выполнялся бы закон сохранения энергии: следовало бы допустить, что на земной поверхности энергия возникает или исчезает. Алгебраическая сумма всех приходов и расходов тепла на земной поверхности должна быть равной нулю. Это и выражается уравнением теплового баланса земной поверхности.

4 уравнение теплового баланса, Чтобы написать уравнение теплового баланса, во-первых, объединим поглощенную радиацию Q (1- А) и эффективное излучение Еэф = Ез - Еа в радиационный баланс: B=S +D R + Eа Ез или B= Q (1- А) - Еэф

5 Радиационный баланс земной поверхности - Это разность между поглощенной радиацией (суммарная радиация минус отраженная) и эффективным излучением (излучение земной поверхности минус встречное излучение) B=S +D R + Eа Ез В=Q(1-A)-Eэф Ночью коротковолновый баланс =0 Поэтому В= - Eэф

6 1) Приход тепла из воздуха или отдачу его в воздух путем теплопроводности обозначим Р 2) Такой же приход или расход путем теплообмена с более глубокими слоями почвы или воды назовем А. 3) Потерю тепла при испарении или приход его при конденсации на земной поверхности обозначим LE, где L удельная теплота испарения и Е испарение / конденсация (масса воды). Тогда уравнение теплового баланса земной поверхности напишется так: В= Р+А+LE Уравнение теплового баланса относится к единице площади деятельной поверхности Все его члены потоки энергии Они имеют размерность Вт/м 2

7 смысл уравнения состоит в том что радиационный баланс на земной поверхности уравновешивается нерадиационной передачей тепла. Уравнение действительно для любого промежутка времени, в том числе и для многолетнего периода.

8 Составляющие теплового баланса системы Земля-атмосфера Получено от солнца Отдано земной поверхностью

9 Варианты баланса тепла Q радиационный баланс LE затраты тепла на испарение H турбулентный поток тепла из (в) атмосферы от подстилающей поверхности G -- поток тепла в (из) глубь почвы

10 Приход и расход В=Q(1-A)-Eэф В= Р+А+LE Q(1-A)- Поток солнечной радиации, частично отражаясь проникает вглубь деятельного слоя на разные глубины и всегда нагревает его Эффективное излучение обычно охлаждает поверхность Eэф Испарение также всегда охлаждает поверхность LE Поток тепла в атмосферу Р охлаждает поверхность днем, когда она горячее воздуха, но согревает ночью, когда атмосфера теплее поверхности земли. Поток тепла в почву А, отводит лишнее тепло днем (охлаждает поверхность), но подводит недостающее тепло из глубин ночью

11 средняя годовая температура земной поверхности и деятельного слоя год от года меняется мало От суток к суткам и от года к году средняя температура деятельного слоя и земной поверхности в любом месте меняется мало. Это значит, что за сутки в глубь почвы или воды попадает днем почти столько же тепла, сколько уходит из нее ночью. Но все же за летние сутки тепла уходит вниз несколько больше, чем приходит снизу. Поэтому слои почвы и воды, и их поверхность день ото дня нагреваются. Зимой происходит обратный процесс. Эти сезонные изменения приходо-расхода тепла в почве и воде за год почти уравновешиваются, и средняя годовая температура земной поверхности и деятельного слоя год от года меняется мало.

12 Подстилающая поверхность - это земная поверхность, непосредственно взаимодействующая с атмосферой

13 Деятельная поверхность Виды теплообмена деятельной поверхности Это поверхность почвы, растительности и любого другого вида поверхности суши и океана (воды), которая поглощает и отдает тепло Она регулирует термический режим самого тела и прилегающего слоя воздуха (приземного слоя)

14 Примерные значения параметров тепловых свойств деятельного слоя Земли Вещество Плотность Кг/м 3 Теплоемкость Дж/(кг К) Теплопроводность Вт/(м К) воздух 1,02 вода,63 лед,5 снег,11 дерево,0 песок,25 скала,0

15 Как прогревается земля: теплопроводность один из видов теплопереноса

16 Механизм теплопроводности (передача тепла вглубь тел) Теплопроводность - один из видов переноса теплоты от более нагретых частей тела к менее нагретым, приводящий к выравниванию температуры. При этом в теле осуществляется передача энергии от частиц (молекул, атомов, электронов), обладающих большей энергией, частицам с меньшей Если относительное изменение температуры Т на расстоянии средней длины свободного пробега частиц мало, то выполняется основной закон теплопроводности (закон Фурье): плотность теплового потока q пропорциональна grad T, то есть где λ коэффициент теплопроводности, или просто теплопроводность, не зависит от grad T. λ зависит от агрегатного состояния вещества (см. табл.), его атомно-молекулярного строения, температуры и давления, состава (в случае смеси или раствора) и т. д. Поток тепла в почву В уравнении теплового баланса это А G T c z

17 Передача тепла в почву подчиняется законам теплопроводности Фурье (1 и 2) 1) Период колебания температуры не меняется с глубиной 2) Амплитуда колебания затухает с глубиной по экспоненте

18 Распространение тепла в глубь почвы Чем больше плотность и влажность почвы, тем лучше она проводит тепло, тем быстрее распространяются в глубину и тем глубже проникают колебания температуры. Но, независимо от типа почвы, период колебаний температуры не изменяется с глубиной. Это значит, что не только на поверхности, но и на глубинах остается суточный ход с периодом в 24 часа между каждыми двумя последовательными максимумами или минимумами и годовой ход с периодом в 12 месяцев.

19 Формирование температуры в верхнем слое почвы (Что показывают коленчатые термометры) Амплитуда колебаний убывает по экспоненте. Ниже некоторой глубины (около см см) температура за сутки почти не меняется.

20 Суточный и годовой ход температуры поверхности почвы Температура на поверхности почвы имеет суточный ход: Минимум наблюдается примерно через полчаса после восхода солнца. К этому времени радиационный баланс поверхности почвы становится равным нулю отдача тепла из верхнею слоя почвы эффективным излучением уравновешивается возросшим притоком суммарной радиации. Нерадиационный же обмен тепла в это время незначителен. Затем температура на поверхности почвы растет до часов, когда достигает максимума в суточном ходе. После этого начинается падение температуры. Радиационный баланс в послеполуденные часы, остается положительным; однако отдача тепла в дневные часы из верхнего слоя почвы в атмосферу происходит не только путем эффективного излучения, но и путем возросшей теплопроводности, а также при увеличившемся испарении воды. Продолжается и передача тепла в глубь почвы. Поэтому температура на поверхности почвы падает с часов до утреннего минимума.

21 Суточный ход температуры в почве на разных глубинах амплитуды колебаний с глубиной уменьшаются. Так, если на поверхности суточная амплитуда равна 30, а на глубине 20 см - 5, то на глубине 40 см она будет уже менее 1 На некоторой сравнительно небольшой глубине суточная амплитуда убывает до нуля. На этой глубине (около см) начинается слой постоянной суточной температуры. Павловск, май. Амплитуда годовых колебаний температуры уменьшается с глубиной по тому же закону. Однако годовые колебания распространяются до большей глубины, что вполне понятно: для их распространения имеется больше времени. Амплитуды годовых колебаний убывают до нуля на глубине около 30 м в полярных широтах, около м в средних широтах, около 10 м в тропиках (где и на поверхности почвы годовые амплитуды меньше, чем в средних широтах). На этих глубинах начинается, слой постоянной годовой температуры. Суточный ход в почве затухает с глубиной по амплитуде и запаздывает по фазе в зависимости от влажности почвы: максимум приходится на вечер на суше и на ночь на воде (так же и минимум на утро и на день)

22 Законы теплопроводности Фурье (3) 3) С глубиной линейно растет запаздывание колебания по фазе Т.е. время наступления максимума температуры сдвигается относительно вышерасположенных слоев на несколько часов (к вечеру и даже ночи)

23 Четвертый закон Фурье глубины слоев постоянной суточной и годовой температуры относятся между собой как корни квадратные из периодов колебаний, т. е. как 1: 365. Это значит, что глубина, на которой затухают годовые колебания, в 19 раз больше, чем глубина, на которой затухают суточные колебания. И этот закон, так же, как и остальные законы Фурье, достаточно хорошо подтверждается наблюдениями.

24 Формирование температуры во всем деятельном слое почвы (Что показывают вытяжные термометры) 1. Период колебаний температуры не изменяется с глубиной 2. Ниже некоторой глубины температура за год не меняется. 3. Глубины распространения годовых колебаний примерно в 19 раз больше, чем суточных

25 Проникновение температурных колебаний вглубь почвы в соответствии с моделью теплопроводности Все установленные из модели теплопроводности следствия вполне согласуются с данными наблюдений Поэтому их часто называют Законами Фурье

26 . Средний суточный ход температуры на поверхности почвы (П) и в воздухе на высоте 2 м (В). Павловск, июнь. Максимальные температуры на поверхности почвы обычно выше, чем в воздухе на высоте метеорологической будки. Это понятно: днем солнечная радиация прежде всего нагревает почву, а уже от нее нагревается воздух.

27 годовой ход температуры почвы Температура поверхности почвы, конечно, меняется и в годовом ходе. В тропических широтах ее годовая амплитуда, т. е. разность многолетних средних температур самого теплого и самого холодного месяца года, мала и с широтой растет. В северном полушарии на широте 10 она около 3, на широте 30 около 10, на широте 50 в среднем около 25.

28 Колебания температуры в почве затухают с глубиной по амплитуде и запаздывают по фазе, максимум сдвигается на осень, а минимум на весну Годовые максимумы и минимумы запаздывают на дней на каждый метр глубины. Годовой ход температуры в почве на разных глубинах от 3 до 753 см в Калининграде. В тропических широтах годовая амплитуда, т. е. разность многолетних средних температур самого теплого и самого холодного месяца года, мала и растет с широтой. В северном полушарии на широте 10 она около 3, на широте 30 около 10, на широте 50 в среднем около 25.

29 Метод термоизоплет Наглядно представляет все особенности хода температуры и во времени и с глубиной (в одном пункте) Пример годовой ход и суточный ход Изоплеты годового хода температуры в почве в Тбилиси

30 Суточный ход температуры воздуха приземного слоя Температура воздуха меняется в суточном ходе вслед за температурой земной поверхности. Поскольку воздух нагревается и охлаждается от земной поверхности, амплитуда суточного хода температуры в метеорологической будке меньше, чем на поверхности почвы, в среднем примерно на одну треть. Рост температуры воздуха начинается вместе с ростом температуры почвы (минут на 15 позже) утром, после восхода солнца. В часов температура почвы, как мы знаем, начинает понижаться. В часов она уравнивается с температурой воздуха; с этого времени при дальнейшем падении температуры почвы начинает падать и температура воздуха. Таким образом, минимум в суточном ходе температуры воздуха у земной поверхности приходится на время вскоре после восхода солнца, а максимум на часов.

32 Различия в тепловом режиме почвы и водоемов Существуют резкие различия в нагревании и тепловых особенностях поверхностных слоев почвы и верхних слоев водоемов. В почве тепло распространяется по вертикали путем молекулярной теплопроводности, а в легкоподвижной воде также путем турбулентного перемешивания водных слоев, намного более эффективного. Турбулентность в водоемах обусловлена, прежде всего, волнением и течениями. Но в ночное время суток и в холодное время года к этого рода турбулентности присоединяется еще и термическая конвекция: охлажденная на поверхности вода опускается вниз вследствие возросшей плотности и замещается более теплой водой из нижних слоев.

33 Особенности температуры водоемов, связанные с большими коэффициентами турбулентной теплопередачи Суточные и годовые колебания в воде проникают на значительно большие глубины, чем в почве Амплитуды температуры гораздо меньше и почти одинаковы в ВКС озер и морей Потоки тепла в деятельном слое воды во много раз больше, чем в почве

34 Суточные и годовые колебания В результате суточные колебания температуры воды распространяются на глубину порядка десятков метров, а в почве менее чем до одного метра. Годовые колебания температуры в воде распространяются на глубину сотен метров, а в почве только на м. Итак, тепло, приходящее днем и летом на поверхность воды, проникает до значительной глубины и нагревает большую толщу воды. Температура верхнего слоя и самой поверхности воды повышается при этом мало. В почве приходящее тепло распределяется в тонком верхнем слое, который, таким образом, сильно нагревается. Теплообмен с более глубокими слоями в уравнении теплового баланса «А» для воды гораздо больше, чем для почвы, а Поток тепла в атмосферу «Р» (турбулентность) соответственно меньше. Ночью и зимой вода теряет тепло из поверхностного слоя, но взамен него приходит накопленное тепло из нижележащих слоев. Поэтому температура на поверхности воды понижается медленно. На поверхности почвы температура при отдаче тепла падает быстро: тепло, накопленное в тонком верхнем слое, быстро из него уходит без восполнения снизу.

35 Получены карты турбулентного теплообмена атмосферы и подстилающей поверхности

36 В океанах и морях некоторую роль в перемешивании слоев и в связанной с ним передаче тепла играет также и испарение. При значительном испарении с поверхности моря верхний слой воды становится более соленым и плотным, вследствие чего вода опускается с поверхности в глубину. Кроме того, радиация глубже проникает в воду в сравнении с почвой. Наконец, теплоемкость воды велика в сравнении с почвой, и одно и то же количество тепла нагревает массу воды до меньшей температуры, чем такую же массу почвы. ТЕПЛОЁМКОСТЬ - Количество теплоты, поглощаемой телом при нагревании на 1 градус (по Цельсию) или отдаваемой при остывании на 1 градус (по Цельсию) или способность материала аккумулировать тепловую энергию.

37 Вследствие указанных различий в распространении тепла: 1. вода за теплое время года накапливает в достаточно мощном слое воды большое количество тепла, которое отдает в атмосферу в холодный сезон. 2. почва в течение теплого сезона отдает по ночам большую часть того тепла, которое получает днем, и мало накапливает его к зиме. В результате указанных различий температура воздуха над морем летом ниже, а зимой выше, чем над сушей. В средних широтах за теплую половину года в почве накапливается 1,5 3 ккал тепла на каждый квадратный сантиметр поверхности. В холодное время почва отдает это тепло атмосфере. Величина ±1,5 3 ккал/см 2 в год составляет годовой теплооборот почвы.

38 По амплитудам годового хода температуры определяют континентальный климат или морской Карта амплитуд годового хода температуры у поверхности Земли

39 Положение места относительно береговой линии существенно влияет на режим температуры, влажности, облачности, Осадков и определяет степень континентальности климата.

40 Континентальность климата Континентальность климата - совокупность характерных особенностей климата, определяемых воздействиями материка на процессы климатообразования. В климате над морем (морской климат) наблюдаются малые годовые амплитуды температуры воздуха по сравнению с континентальным климатом над сушей с большими годовыми амплитудами температуры.

41 Годовой ход температуры воздуха на широте 62 с.ш.: на Фарерских островах и Якутске отражает географическое положение этих пунктов: в первом случае - у западных берегов Европы, во втором - в восточной части Азии

42 Средняя годовая амплитуда в Торсхавне 8, в Якутске 62 C. На континенте Евразия наблюдается возрастание годовой амплитуды в направлении с запада на восток.

43 Евразия - материк с наибольшим распространением континентального климата Этот тип климата характерен для внутренних регионов материков. Континентальный климат является господствующим на значительной части территории России, Украины, Средней Азии (Казахстан, Узбекистан, Таджикистан), Внутреннего Китая, Монголии, внутренних регионах США и Канады. Континентальный климат приводит к образованию степей и пустынь, так как большая часть влаги морей и океанов не доходит до внутриконтинентальных регионов.

44 индекс континентальности - это числовая характеристика континентальности климата. Существует ряд вариантов И К, в основу которых положена та или иная функция годовой амплитуды температуры воздуха А: по Горчинскому, по Конраду,по Ценкеру, по Хромову Есть индексы, построенные на других основаниях. Например, предложено в качестве И. К. отношение повторяемости континентальных воздушных, масс к повторяемости морских воздушных масс. Л. Г. Полозова предложила характеризовать континентальность по отдельности для января и июля по отношению к наибольшей континентальности на данной широте; эта последняя определяется по изаномалам температуры. Η. Η. Иванов предложил И. К. в виде функции от широты, годовой и суточной амплитуд температуры и от дефицита влажности в самый сухой месяц.

45 индекс континентальности Величина годовой амплитуды температуры воздуха зависит от географической широты. В низких широтах годовые амплитуды температуры меньше по сравнению с высокими широтами. Это положение приводит к необходимости исключения влияния широты на годовую амплитуду. Для этого предложены различные показатели континентальности климата, представленные функцией годовой амплитуды температуры и широты места. Формула Л. Горчинского где А - годовая амплитуда температуры. Средняя континентальность над океаном равна нулю, а для Верхоянска равна 100.

47 Морской и континентальный Область умеренного морского климата характеризуется довольно тёплой зимой (от -8 С до 0 С), прохладным летом (+16 С) и большим количеством осадков (более 800 мм), равномерно выпадающих в течение всего года. Для умеренно континентального климата характерно колебание температуры воздуха примерно от -8 С в январе до +18 С в июле, осадков здесь больше мм, которые выпадают большей частью летом. Для области континентального климата характерны более низкие температуры в зимний период (до -20 С) и меньшее количество осадков (около 600 мм). В области умеренного резко континентального климата зима будет ещё холоднее до -40 С, а осадков ещё меньше мм.

48 Экстремумы В Московской области летом на поверхности обнаженной почвы наблюдаются температуры до +55, а в пустынях даже до +80. Ночные минимумы температуры, наоборот, бывают на поверхности почвы ниже, чем в воздухе, так как, прежде всего, почва выхолаживается эффективным излучением, а уже от нее охлаждается воздух. Зимой в Московской области ночные температуры на поверхности (в это время покрытой снегом) могут падать ниже 50, летом (кроме июля) до нуля. На снежной поверхности во внутренних районах Антарктиды даже средняя месячная температура в июне около 70, а в отдельных случаях она может падать до 90.

49 Карты средней температуры Воздуха Январь и июль

50 Распределение температуры воздуха (зональность распределения главный фактор климатической зональности) Средняя годовая Средняя лето (июль) Средняя за январь Средняя по широтным поясам

51 Температурный режим территории России Характеризуется большими контрастами в зимний период. В Восточной Сибири зимний антициклон, являющийся чрезвычайно устойчивым барическим образованием, способствует формированию на северо-востоке России полюса холода со среднемесячной температурой воздуха зимой 42 С. Средний минимум температуры зимой составляет 55 С. На Европейской территории России под влиянием переноса теплого атлантического воздуха средняя температура за зиму изменяется от С на юго-западе, достигая на Черноморском побережье положительных значений, до С в центральных областях.

52 Средняя температура приземного воздуха (С) зимой гг.

53 Средняя температура приземного воздуха (С) летом гг. Средняя температура воздуха изменяется от 4 5 С на северных побережьях до С на югозападе, где ее средний максимум составляет С, а абсолютный максимум 45 С. Амплитуда экстремальных значений температуры достигает 90 С. Особенностью режима температуры воздуха России являются ее большие суточные и годовые амплитуды, особенно в резко континентальном климате Азиатской территории. Годовая амплитуда изменяется от 8 10 С ЕТР до 63 С в Восточной Сибири в районе Верхоянского хребта.

54 Влияние растительного покрова на температуру поверхности почвы Растительный покров уменьшает охлаждение почвы ночью. Ночное излучение происходит при этом преимущественно с поверхности самой растительности, которая и будет наиболее охлаждаться. Почва же под растительным покровом сохраняет более высокую температуру. Однако днем растительность препятствует радиационному нагреванию почвы. Суточная амплитуда температуры под растительным покровом уменьшена, а средняя суточная температура понижена. Итак, растительный покров в общем охлаждает почву. В Ленинградской области поверхность почвы под полевыми культурами может оказаться в дневные часы на 15 холоднее, чем почва под паром. В среднем же за сутки она холоднее обнаженной почвы на 6, и даже на глубине 5 10 см остается разница в 3 4.

55 Влияние снежного покрова на температуру почвы Снежный покров предохраняет почву зимой от потери тепла. Излучение идет с поверхности самого снежного покрова, а почва под ним остается более теплой, чем обнаженная почва. При этом суточная амплитуда температуры на поверхности почвы под снегом резко уменьшается. В средней полосе Европейской территории России при снежном покрове 50 см температура поверхности почвы под ним на 6 7 выше, чем температура обнаженной почвы, и на 10 выше, чем температура на поверхности самого снежного покрова. Зимнее промерзание почвы под снегом достигает глубин порядка 40 см, а без снега может распространяться до глубин более 100 см. Итак, растительный покров летом снижает температуру на поверхности почвы, а снежный покров зимой, напротив, ее повышает. Совместное действие растительного покрова летом и снежного зимой уменьшает годовую амплитуду температуры на поверхности почвы; это уменьшение порядка 10 в сравнении с обнаженной почвой.

56 ОПАСНЫЕ МЕТЕОРОЛОГИЧЕСКИЕ ЯВЛЕНИЯ И ИХ КРИТЕРИИ 1. очень сильный ветер (в т.ч. шквал) не менее 25 м/с, (включая порывы), на побережье морей и в горных районах не менее 35 м/ с; 2. очень сильный дождь не менее 50 мм за период не более 12 ч 3. ливень не менее 30мм за период не более 1 ч; 4. очень сильный снег не менее 20мм за период не более 12 ч; 5. крупный град - не менее 20мм; 6. сильная метель- при средней скорости ветра не менее 15м/с и видимости менее 500 м;

57 7. Сильная пыльная буря при средней скорости ветра не менее 15м/с, и видимости не более 500 м; 8. Сильный туман видимость не более 50 м; 9. Сильное гололедно-изморозевое отложение не менее 20 мм для гололеда, не менее 35 мм для сложного отложения или мокрого снега, не менее 50 мм для изморози. 10. Сильная жара - Высокая максимальная температура воздуха не менее 35 ºС в течение более 5 сут. 11. Сильный мороз - Минимальная температура воздуха не менее минус 35ºС в течение не менее 5 сут.

58 Опасные явления, связанные с повышенными температурами Пожароопасность Сильная жара

59 Опасные явления, связанные с пониженными температурами Снежные бури- биззарды Сильные морозы Резкие потепления - фены

60 Заморозки. Заморозком называется кратковременное понижение температуры воздуха или деятельной поверхности (поверхности почвы) до О С и ниже на общем фоне положительных средних суточных температур

61 Основные понятия о температуре воздуха ЧТО НУЖНО ЗНАТЬ! Карту среднегодовой температуры Отличия температуры лета и зимы Зональность распределение температуры Влияние распределения суши и моря Распределение температуры воздуха по высоте Суточный и годовой ход температуры почвы и воздуха Опасные явления погоды обусловленные температурным режимом


Лесная метеорология. Лекция 4: ТЕПЛОВОЙ РЕЖИМ АТМОСФЕРЫ и земной поверхности тепловой режим земной поверхности и атмосферы: Распределение температуры воздуха в атмосфере и на поверхности суши и его непрерывные

Вопрос 1. Радиационный баланс земной поверхности Вопрос 2. Радиационный баланс атмосферы введение Приток тепла в виде лучистой энергии это часть общего притока тепла, который изменяет температуру атмосферы.

Тепловой режим атмосферы Лектор: Соболева Надежда Петровна, доцент каф. ГЭГХ Температура воздуха Воздух всегда имеет температуру Температура воздуха в каждой точке атмосферы и в разных местах Земли непрерывно

КЛИМАТ НОВОСИБИРСКОЙ ОБЛАСТИ Равнинность Западной Сибири, открытость к Ледовитому океану и обширным районам Казахстана и Средней Азии способствуют глубокому проникновению воздушных масс на территорию Новосибирской

Контрольная работа по теме «Климат России». 1 Вариант. 1. Какой климатообразующий фактор является ведущим? 1) Географическое положение 2) Циркуляция атмосферы 3) Близость океанов 4) Морские течения 2.

Понятия «Климат» и «Погода» на примере метеорологических данных по городу Новосибирску Симоненко Анна Цель работы: выяснить разницу в понятиях «Погода» и «Климат» на примере метеорологических данных по

Министерство образования и науки Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "САРАТОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г.ЧЕРНЫШЕВСКОГО" Кафедра метеорологии

Литература 1 Интернет ресурс http://www.beltur.by 2 Интернет ресурс http://otherreferats.allbest.ru/geography/00148130_0.html 3 Интернет ресурс http://www.svali.ru/climat/13/index.htm 4 Интернет ресурс

Воздушные факторы и погода в зоне их перемещения. Холодович Ю. А. Белорусский национальный технический университет Введение Наблюдения за погодой получили достаточно широкое распространение во второй половине

МИНОБРНАУКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего образования «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г.ЧЕРНЫШЕВСКОГО»

ФИЗИЧЕСКАЯ ГЕОГРАФИЯ МИРА ЛЕКЦИЯ 9 РАЗДЕЛ 1 ЕВРАЗИЯ ПРОДОЛЖЕНИЕ ТЕМЫ КЛИМАТ И АГРОКЛИМАТИЧЕСКИЕ РЕСУРСЫ ВОПРОСЫ, РАССМАТРИВАЕМЫЕ НА ЛЕКЦИИ Циркуляция атмосферы, особенности увлажнения и термического режима

Радиация в атмосфере Лектор: Соболева Надежда Петровна, доцент каф. ГЭГХ Радиация или излучение это электромагнитные волны, которые характеризуются: L длиной волны и ν частотой колебаний Радиация распространяется

МОНИТОРИНГ УДК 551.506 (575/2) (04) МОНИТОРИНГ: ПОГОДНЫЕ УСЛОВИЯ В ЧУЙСКОЙ ДОЛИНЕ В ЯНВАРЕ 2009 г. Г.Ф. Агафонова зав. метеоцентром, А.О. Подрезов канд. геогр. наук, доцент, С.М. Казачкова аспирант Январь

ТЕПЛОВЫЕ ПОТОКИ В КРИОМЕТАМОРФИЧЕСКОЙ ПОЧВЕ СЕВЕРНОЙ ТАЙГИ И ЕЕ ТЕПЛООБЕСПЕЧЕННОСТЬ Остроумов В.Е. 1, Давыдова А.И. 2, Давыдов С.П. 2, Федоров-Давыдов Д.Г. 1, Еремин И.И. 3, Кропачев Д.Ю. 3 1 Институт

18. Прогноз температуры и влажности воздуха у поверхности Земли 1 18. ПРОГНОЗ ТЕМПЕРАТУРЫ И ВЛАЖНОСТИ ВОЗДУХА У ПОВЕРХНОСТИ ЗЕМЛИ Локальные изменения температуры T t в некоторой точке определяются индивидуальными

УДК 55.5 ПОГОДНЫЕ УСЛОВИЯ В ЧУЙСКОЙ ДОЛИНЕ ОСЕНЬЮ г. Е.В. Рябикина, А.О. Подрезов, И.А. Павлова WEATHER CONDITIONS IN CHUI VALLEY IN AUTUMN E.V. Ryabikina, A.O. Podrezov, I.A. Pavlova Метеорологическая

Модуль 1 Вариант 1. ФИО Группа Дата 1. Метеорология наука о процессах, происходящих в земной атмосфере (3б) А) химических Б) физических В) климатических 2. Климатология наука о климате, т.е. совокупности

1. Описание климатограммы: Столбцы в климатограмме количество месяцев, снизу отмечены первые буквы месяцев. Иногда изображены 4 сезона, иногда не все месяцы. Слева отмечена шкала температур. Нулевая отметка

МОНИТОРИНГ УДК 551.506 МОНИТОРИНГ: ПОГОДНЫЕ УСЛОВИЯ В ЧУЙСКОЙ ДОЛИНЕ ОСЕНЬЮ г. Э.Ю. Зыскова, А.О. Подрезов, И.А. Павлова, И.С. Брусенская MONITORING: WEATHER CONDITIONS IN CHUI VALLEY IN AUTUMN E.Yu. Zyskova,

Стратификация и вертикальное равновесие насыщенного воздуха Врублевский С. В. Белорусский национальный технический университет Введение Воздух в тропосфере находится в состоянии постоянного перемешивания

"Климатические тенденции в холодный период года в Молдове" Татьяна стаматова, Государственная Гидрометеорологическая Служба 28 октября 2013, Москва, Россия Основные климатические характеристики зимнего

А.Л. Афанасьев, П.П. Бобров, О.А. Ивченко Омский государственный педагогический университет С.В. Кривальцевич Институт оптики атмосферы СО РАН, г. Томск Оценка тепловых потоков при испарении с поверхности

УДК 551.51 (476.4) М Л Смоляров (Могилев, Беларусь) ХАРАКТЕРИСТИКА КЛИМАТИЧЕСКИХ СЕЗОНОВ г. МОГИЛЕВА Введение. Познание климата на научном уровне началось с организации метеорологических станций, оснащенных

АТМОСФЕРА И КЛИМАТЫ ЗЕМЛИ Конспект лекций Осинцева Н.В. Состав атмосферы Азот (N 2) 78,09%, Кислород (O 2) 20,94%, Аргон (Ar) - 0,93%, Углекислый газ (CO 2) 0,03%, Прочие газы 0, 02 %: озон (О 3),

Раз дел ы Код комп.. Тематический план и содержание дисциплины Тематический план Наименование разделов (модулей) Количество часов Аудиторных Самостоятельной работы очно зао чно сокр. очно заоч но сокр.

Министерство образования и науки Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Метеорология муссонов Герасимович В.Ю. Белорусский национальный технический университет Введение Муссоны, устойчивые сезонные ветры. Летом, в сезон муссонов, эти ветры обычно дуют с мор на сушу и приносят

Методы решение задач повышенной сложности физико-географической направленности, применение их на уроках и во внеурочное время Учитель географии: Герасимова Ирина Михайловна 1 Определите, в какой из точек,

3. Изменение климата Температура воздуха Данный показатель характеризует среднегодовую температуру воздуха, ее изменение на протяжении определенного периода времени и отклонение от среднего многолетнего

КЛИМАТИЧЕСКАЯ ХАРАКТЕРИСТИКА ГОДА 18 2 глава Средняя по Республике Беларусь температура воздуха за 2013 г. составила +7,5 С, что на 1,7 С выше климатической нормы. В течение 2013 г. в подавляющем большинстве

Проверочная работа по географии Вариант 1 1. Какое годовое количество осадков характерно для резко континентального климата? 1) более 800 мм в год 2) 600-800 мм в год 3) 500-700 мм в год 4) менее 500 мм

Алентьева Елена Юрьевна Муниципальное автономное общеобразовательное учреждение средняя общеобразовательная школа 118 имени героя советского союза Н. И. Кузнецова города Челябинска КОНСПЕКТ УРОКА ГЕОГРАФИИ

Министерство образования и науки Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ТЕПЛОВЫЕ СВОЙСТВА И ТЕПЛОВОЙ РЕЖИМ ПОЧВЫ 1. Тепловые свойства почвы. 2. Тепловой режим и пути его регулирования. 1. Тепловые свойства почвы Тепловой режим почв один из важных показателей, во многом определяющий

МАТЕРИАЛЫ для подготовки к компьютерному тестированию по географии 5 класс (углубленное изучение географии) Учитель: Ю. В. Остроухова ТЕМА Знать Уметь Движение Земли по околосолнечной орбите и своей оси

1.2.8. Климатические условия (ГУ «Иркутский ЦГМС-Р» Иркутского УГМС Росгидромета; Забайкальское УГМС Росгидромета; ГУ «Бурятский ЦГМС» Забайкальского УГМС Росгидромета) В результате значительной отрицательной

Задания А2 по географии 1. Какая из перечисленных горных пород является метаморфической по происхождению? 1) песчаник 2) туф 3) известняк 4) мрамор Мрамор относится к метаморфическим породам. Песчаник