Уравнение радиоактивного распада. Период полураспада радиоактивных элементов - что это такое и как его определяют? Формула периода полураспада

Явление радиоактивности было открыто в 1896 г. А. Беккерелем, который наблюдал спонтанное испускание солями урана неизвестного излучения. Вскоре Э. Резерфорд и супруги Кюри установили, что при радиоактивном распаде испускаются ядра Не (α-частицы), электроны (β-частицы) и жесткое электромагнитное излучение (γ-лучи).

В 1934 г. был открыт распад с вылетом позитронов (β + -распад), а в 1940 г. был открыт новый тип радиоактивности - спонтанное деление ядер: делящееся ядро разваливается на два осколка сравнимой массы с одновременным испусканием нейтронов и γ -квантов. Протонная радиоактивность ядер наблюдалась в 1982 г. Таким образом, существуют следующие виды радиоактивного распада: α-распад; -распад; - распад; е - захват.

Радиоактивность - способность некоторых атомных ядер самопроизвольно (спонтанно) превращаться в другие ядра с испусканием частиц.

Атомные ядра состоят из протонов и нейтронов , которые имеют обобщающее название - нуклоны. Количество протонов в ядре определяет химические свойства атома и обозначается Z (порядковый номер элемента). Количество нуклонов в ядре называют массовым числом и обозначают А . Ядра с одинаковым порядковым номером и различными массовыми числами называются изотопами . Все изотопы одного химического элемента имеют одинаковыехимические свойства, а физические свойства могут различаться весьма сильно. Для обозначения изотопов используют символ химического элемента с двумя индексами: A Z Х . Нижний индекс - порядковый номер, верхний - массовое число. Часто нижний индекс опускают, так как на него указывает сам символ элемента.

Например, пишут 14 С вместо 14 6 С.

Способность ядра к распаду зависит от его состава. У одного и того же элемента могут быть и стабильный, и радиоактивный изотопы.

Например, изотоп углерода 12 С стабилен, а изотоп 14 С радиоактивен.

Радиоактивный распад - явление статистическое. Способность изотопа к распаду характеризует постоянная распадаλ.

Постоянная распада λ- вероятность того, что ядро данного изотопа распадется за единицу времени.



Обозначим число N ядер радиоактивного распада в момент времени t, dN 1 - число ядер распавшихся за время dt. Поскольку количество ядер в веществе огромно, то выполняется закон больших чисел. Вероятность распада ядра за малое время dt находится по формуле dP = λdt .Частота равна вероятности: d N 1 / N = dP = λdt. d N 1 / N = λdt - формула определяющая количество распавшихся ядер.

Решением уравнения является: , - формула называется законом радиоактивного распада: Число радиоактивных ядер убывает со временем по экспоненциальному закону.

Здесь N- число нераспавшихся ядер к моменту времени t; N о - первоначальное число нераспавшихся ядер; λ - постоянная радиоактивного распада.

На практике используют не постоянную распада λ , а величину, называемую периодом полураспада Т .

Период полураспада (Т) - время, в течение которого распадается половинарадиоактивных ядер.

Закон радиоактивного распада черезпериодполураспада (Т) имеет вид:

Связь между периодом полураспада и постоянной распада определяется формулой: T = ln(2/λ) = 0,69/λ

Периодом полураспада может быть как очень большим, так и очень маленьким.

Для оценки степени активности радиоактивного изотопа используют величину, называемую активностью.

Активность число ядер радиоактивного препарата распадающихся за единицу времени: А = dN расп /dt

За единицу активности в СИ принимают 1 беккерель (Бк) = 1 распад/с - активность препарата, в котором за 1 с происходит 1 распад. Более крупная единица активности - 1 резерфорд (Рд) = Бк. Часто используется внесистемная единица активности - кюри (Ки), равная активности 1 г радия : 1 Ки = 3,7 Бк.

Со временем активность убывает по тому же экспоненциальному закону, по которому распадается сам радионуклид:

= .
На практике для расчетаактивности применяют формулу:

А = = λN = 0,693 N/T.

Если выразим число атомов через массу и малярную массу, тогда формула для расчетаактивности примет вид: А = = 0,693 (μТ)

где - число Авогадро; μ - молярная масса.

Радиоактивный распад ядер одного и того же элемента происходит постепенно и с разной скоростью для разных радиоактивных элементов. Нельзя указать заранее момент распада ядра, но можно установить вероятность распада одного ядра за единицу времени. Вероятность распада характеризуется коэффициентом "λ" - постоянной распада, который зависит только от природы элемента.

Закон радиоактивного распада. (Слайд 32)

Экспериментально установлено, что:

За равные промежутки времени распадается одинаковая доля наличных (т.е. еще не распавшихся к началу данного промежутка) ядер данного элемента.

Дифференциальная форма закона радиоактивного распада. (слайд 33)

Устанавливает зависимость количества не распавшихся атомов в данный момент времени от начального количества атомов в нулевой момент начала отсчета, а так же от времени распада"t" и постоянной распада "λ".

N t - наличное количество ядер.

dN - убыль наличного количества атомов;

dt - время распада.

dN ~ N t · dt Þ dN = –λ N t dt

"λ" - коэффициент пропорциональности, постоянная распада, характеризует долю наличных, еще не распавшихся ядер;

"–" - говорит том, что с течением времени количество распадающихся атомов уменьшается.

Следствие № 1: (слайд 34)

λ = –dN/N t · dt - относительная скорость радиоактивного распада для данного вещества есть величина постоянная.

Следствие № 2:

dN/N t = – λ · Nt - абсолютная скорость радиоактивного распада пропорциональна количеству не распавшихся ядер к моменту времени dt. Она не является "const", т.к. уменьшатся с течением времени.

4. Интегральная форма закона радиоактивного распада. (слайд 35)

Устанавливает зависимость числа оставшихся атомов в данный момент времени (N t) от их исходного количества (N o), времени (t) и постоянной распада "λ". Интегральная форма получается из дифференциальной:

1. Разделим переменные:

2. Проинтегрируем обе части равенства:

3. Найдем интегралы Þ -общее решение

4. Найдем частное решение:

Если t = t 0 = 0 Þ N t = N 0 , подставим эти условия в общее решение

(начало (исходное число

распада) атомов)

Þ Таким образом:

интегральная форма закона р/акт. распада

N t - число не распавшихся атомов к моменту времени t ;

N 0 - исходное число атомов при t = 0 ;

λ - постоянная распада;

t - время распада

Вывод: Наличное количество не распавшихся атомов ~ исходному количеству и убывает с течением времени по экспоненциальному закону. (слайд 37)

Nt= N 0 ·2 λ 1 λ 2 >λ 1 Nt = N 0 ·e λ · t

5. Период полураспада и его связь с постоянной распада. (слайд 38,39)

Период полураспада (Т) - это время, в течение которого распадается половина исходного числа радиоактивных ядер.

Он характеризует скорость распада различных элементов.

Основные условия определения "Т":

1. t = Т - период полураспада.

2. - половина от исходного числа ядер за "Т".

Формулу связи можно получить, если эти условия подставить в интегральную форму закона радиоактивного распада

1.

2. Сократим «N 0 ». Þ

3.

4. Потенцируем.

Þ

5.

Период полураспада изотопов различается в широких пределах: (слайд40)

238 U ® T = 4,51· 10 9 лет

60 Co ® T = 5,3 года

24 Na ® T = 15,06 часов

8 Li ® T = 0,84 c

6. Активность. Её виды, единицы измерения и количественная оценка. Формула активности. (слайд 41)

На практике основное значение имеет общее число распадов, приходящихся в источнике радиоактивного излучения в единицу времени => количественно меру распада определяют активностью радиоактивного вещества.

Активность (А) зависит от относительной скорости распада "λ" и от наличного числа ядер (т.е. от массы изотопа).

"А" - характеризует абсолютную скорость распада изотопа.

3 варианта записи формулы активности: (слайд 42,43)

I. Из закона радиоактивного распада в дифференциальной форме следует:

Þ

активность (абсолютная скорость радиоактивного распада).

активность

II. Из закона радиоактивного распада в интегральной форме следует:

1. (домножим обе части равенства на «λ»).

2. ; ( исходная активность при t = 0)

3. убыль активности идет по экспоненциальному закону

III. При использовании формулы связи постоянной распада "λ" с периодом полураспада "Т" следует:

1. (домножим обе части равенства на «N t », что бы получить активность). Þ и получаем формулу для активности

2.

Единицы измерения активности: (слайд 44)

А. Системные единицы измерения.

A = dN/dt

1[расп/с] = 1[Бк] – беккерель

1Мрасп/с =10 6 расп/с = 1 [Рд] - резерфорд

Б. Внесистемные единицы измерения.

[Ки] - кюри (соответствует активности 1г радия).

1[Ки] = 3,7 · 10 10 [расп/с] - в 1г радия за 1с распадается 3,7· 10 10 радиоактивных ядер.

Виды активности: (слайд 45)

1. Удельная - это активность единицы массы вещества.

А уд. = dA/dm [Бк/кг].

Её используют для характеристики порошкообразных и газообразных веществ.

2. Объёмная - это активность в единице объёма вещества или среды.

А об = dA/dV [Бк/м 3 ]

Её используют для характеристики жидких веществ.

На практике убыль активности измеряется с помощью специальных радиометрических приборов. Например, зная активность препарата и продукта, образующегося при распаде 1 ядра, можно вычислить, сколько частиц каждого вида испускает препарат за 1 секунду.

Если при делении ядра образуется нейтронов"n", то за 1с испускается поток нейтронов "N". N = n · А.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-08-08

В результате всех видов радиоактивных превращений количество ядер данного изотопа постепенно уменьшается. Убывание количества распадающихся ядер происходит по экспоненте и записывается в следующем виде:

N=N 0 е t , (10)

где N 0 – количество ядер радионуклида в момент начала отсчета времени (t=0); - постоянная распада, которая для различных радионуклидов разная;N – количество ядер радионуклида спустя времяt ; е – основание натурального логарифма (е = 2,713….). Это и есть основной закон радиоактивного распада.

Вывод формулы (10). Естественный радиоактивный распад ядер протекает самопроизвольно, без всякого воздействия извне. Этот процесс статистический, и для отдельно взятого ядра можно лишь указать вероятность распада за определенное время. Поэтому скорость распада можно характеризовать временемt. Пусть имеется числоN атомов радионуклида. Тогда, число распадающихся атомовdN за времяdt пропорционально числу атомовN и промежутку времениdt:

Знак минус показывает, что число N исходных атомов уменьшается во времени. Экспериментально показано, что свойства ядер со временем не меняются. Отсюда следует, чтоlесть величина постоянная и носит название – постоянная распада. Из (11) следует, чтоl= –dN/N=const, приdt= 1, т.е. постояннаяlравна вероятности распада одного радионуклида за единицу времени.

В уравнении (11) поделим правую и левую части на N и проинтегрируем:

dN/N = – l dt (12)

(13)

ln N/N 0 = – λt и N = N 0 е – λt , (14)

где N 0 есть начальное число распадающихся атомов (N 0 приt=0).

Формула (14) имеет два недостатка. Для определения числа распадающихся ядер необходимо знать N 0 . Прибора для его определения не существует. Второй недостаток – хотя постоянная распадаλ имеется в таблицах, но прямой информации о скорости распада она не несет.

Чтобы избавиться от величины λ вводится понятиепериод полураспада Т (иногда в литературе обозначается Т 1/2). Периодом полураспада называется промежуток времени, в течение которого исходное число радиоактивных ядер уменьшается вдвое, а число распадающихся ядер за времяТ остается постоянным (λ=const).

В уравнении (10) правую и левую часть поделим на N , и приведем к виду:

N 0 /N = е t (15)

Полагая, что N 0 / N = 2, приt = T , получимln 2 = Т , откуда:

ln 2 = 0,693 = 0,693/ T (16)

Подставив выражение (16) в (10) получим:

N = N 0 е –0.693t/T (17)

На графике (рис.2.) показана зависимость числа распадающихся атомов от времени распада. Теоретически кривая экспонента никогда не может слиться с осью абсцисс, но на практике можно считать, что примерно через 10–20 периодов полураспада радиоактивное вещество распадается полностью.

Для того, чтобы избавиться от величин NиN 0, пользуются следующим свойством явления радиоактивности. Есть приборы, которые регистрируют каждый распад. Очевидно, что можно определить количество распадов за определенный промежуток времени. Это есть не что иное, как скорость распада радионуклида, которую можно назвать активностью: чем больше распадается за одно и тоже время ядер, тем больше активность.

Итак, активность – это физическая величина, характеризующая число радиоактивных распадов в единицу времени:

А = dN / dt (18)

Исходя из определения активности, следует, что она характеризует скорость ядерных переходов в единицу времени. С другой стороны, количество ядерных переходов зависит от постоянной распада l . Можно показать, что:

A = A 0 е –0,693t/T (19)

Вывод формулы (19). Активность радионуклида характеризует число распадов в единицу времени (в секунду) и равна производной по времени от уравнения (14):

А = d N/ dt = l N 0 е –- t = l N (20)

Соответственно начальная активность в момент времени t = 0 равна:

А o = l N o (21)

Исходя из уравнения (20) и с учетом (21), получим:

А = А o е t илиА = А 0 е – 0,693 t / T (22)

Единицей активности в системе СИ принят 1 распад/с=1 Бк (назван Беккерелем в честь французского ученого (1852–1908 г), открывшего в 1896 году естественную радиоактивность солей урана). Используют также кратные единицы: 1 ГБк=10 9 Бк – гигабеккерель, 1 МБк=10 6 Бк – мегабеккерель, 1 кБк=10 3 Бк – килобеккерель и др.

Существует и внесистемная единица Кюри, которая изымается из употребления согласно ГОСТ 8.417-81 и РД 50-454-84. Однако на практике и в литературе она используется. За1Кu принята активность 1г радия.

1Кu = 3,7 10 10 Бк; 1Бк = 2,7 10 –11 Ки (23)

Используют также кратную единицу мегакюри 1Мки=110 6 Ки и дольные – милликюри, 1мКи=10 –3 Ки; микрокюри, 1мкКи=10 –6 Ки.

Радиоактивные вещества могут находиться в различном агрегатном состоянии, в том числе аэрозольном, взвешенном состоянии в жидкости или в воздухе. Поэтому в дозиметрической практике часто используют величину удельной, поверхностной или объемной активности или концентрации радиоактивных веществ в воздухе, жидкости и в почве.

Удельную, объемную и поверхностную активность можно записать соответственно в виде:

А m = А/m; А v = А/v; А s = A/s (24)

где: m – масса вещества;v – объем вещества;s – площадь поверхности вещества.

Очевидно, что:

А m = A / m = A / s r h = А s / r h = A v / r (25)

где: r – плотность почвы, принимается в Республике Беларусь равной 1000кг/м 3 ;h – корнеобитаемый слой почвы, принимается равным 0,2м;s – площадь радиоактивного заражения, м 2 . Тогда:

А m = 5 10 –3 А s ; А m = 10 –3 A v (26)

А m может быть выражена в Бк/кг или Кu/кг;A s может быть выражена в Бк/м 2 ,Кu/ м 2 , Кu/км 2 ;A v может быть выражена в Бк/м 3 или Кu/м 3 .

На практике могут быть использованы как укрупненные, так и дробные единицы измерения. Например: Кu/ км 2 , Бк/см 2 , Бк/г и др.

В нормах радиационной безопасности НРБ-2000 дополнительно введены еще несколько единиц активности, которыми удобно пользоваться при решении задач радиационной безопасности.

Активность минимально значимая (МЗА) – активность открытого источника ионизирующего излучения в помещении или на рабочем месте, при превышении которой требуется разрешение органов санитарно-эпидемиологической службы Министерства здравоохранения на использование этих источников, если при этом также превышено значение минимально значимой удельной активности.

Активность минимально значимая удельная (МЗУА) – удельная активность открытого источника ионизирующего излучения в помещении или на рабочем месте, при превышении которой требуется разрешение органов санитарно-эпидемиологической службы Министерства здравоохранения на использование этого источника, если при этом также превышено значение минимально значимой активности.

Активность эквивалентная равновесная (ЭРОА) дочерних продуктов изотопов радона 222 Rn и 220 Rn – взвешенная сумма объемных активностей короткоживущих дочерних продуктов изотопов радона – 218 Ро (RaA ); 214 Pb (RaB ); 212 Pb (ThB ); 212 В i (ThC ) соответственно:

(ЭРОА) Rn = 0,10 А RaA + 0,52 А RaB + 0,38 А RaC ;

(ЭРОА) Th = 0,91 А ThB + 0,09 А ThC ,

где А – объемные активности дочерних продуктов изотопов радона и тория.

Закон радиоактивного распада -- физический закон, описывающий зависимость интенсивности радиоактивного распада от времени и количества радиоактивных атомов в образце. Открыт Фредериком Содди и Эрнестом Резерфордом, каждый из которых впоследствии был награжден Нобелевской премией. Они обнаружили его экспериментальным путём и опубликовали в 1903 году в работах «Сравнительное изучение радиоактивности радия и тория» и «Радиоактивное превращение», сформулировав следующим образом:

«Во всех случаях, когда отделяли один из радиоактивных продуктов и исследовали его активность независимо от радиоактивности вещества, из которого он образовался, было обнаружено, что активность при всех исследованиях уменьшается со временем по закону геометрической прогрессии».

С помощью теоремы Бернулли был получен следующий вывод: скорость превращения всё время пропорциональна количеству систем, еще не подвергнувшихся превращению.

Существует несколько формулировок закона, например, в виде дифференциального уравнения:

радиоактивный распад атом квантовомеханический

которое означает, что число распадов?dN, произошедшее за короткий интервал времени dt, пропорционально числу атомов N в образце.

Экспоненциальный закон

В указанном выше математическом выражении -- постоянная распада, которая характеризует вероятность радиоактивного распада за единицу времени и имеющая размерность с?1 . Знак минус указывает на убыль числа радиоактивных ядер со временем.

Решение этого дифференциального уравнения имеет вид:

где -- начальное число атомов, то есть число атомов для

Таким образом, число радиоактивных атомов уменьшается со временем по экспоненциальному закону. Скорость распада, то есть число распадов в единицу времени также падает экспоненциально.

Дифференцируя выражение для зависимости числа атомов от времени, получаем:

где -- скорость распада в начальный момент времени

Таким образом, зависимость от времени числа нераспавшихся радиоактивных атомов и скорости распада описывается одной и той же постоянной

Характеристики распада

Кроме константы распада радиоактивный распад характеризуют ещё двумя производными от неё константами:

1. Среднее время жизни

Время жизни квантовомеханической системы (частицы, ядра, атома, энергетического уровня и т.д.) -- промежуток времени, в течение которого система распадается с вероятностью где e = 2,71828… -- число Эйлера. Если рассматривается ансамбль независимых частиц, то в течение времени число оставшихся частиц уменьшается (в среднем) в е раз от количества частиц в начальный момент. Понятие «время жизни» применимо в условиях, когда происходит экспоненциальный распад (то есть ожидаемое количество выживших частиц N зависит от времени t как

где N 0 -- число частиц в начальный момент). Например, для осцилляций нейтрино этот термин применять нельзя.

Время жизни связано с периодом полураспада T 1/2 (временем, в течение которого число выживших частиц в среднем уменьшается вдвое) следующим соотношением:

Величина, обратная времени жизни, называется постоянной распада:

Экспоненциальный распад наблюдается не только для квантовомеханических систем, но и во всех случаях, когда вероятность необратимого перехода элемента системы в другое состояние за единицу времени не зависит от времени. Поэтому термин «время жизни» применяется в областях, достаточно далёких от физики, например, в теории надёжности, фармакологии, химии и т. д. Процессы такого рода описываются линейным дифференциальным уравнением

означающим, что число элементов в начальном состоянии убывает со скоростью пропорциональной N(t)/. Коэффициент пропорциональности равен Так, в фармакокинетике после разового введения химического соединения в организм соединение постепенно разрушается в биохимических процессах и выводится из организма, причём если оно не вызывает существенных изменений в скорости действующих на него биохимических процессов (т.е. воздействие линейно), то уменьшение его концентрации в организме описывается экспоненциальным законом, и можно говорить о времени жизни химического соединения в организме (а также о периоде полувыведения и константе распада).

2. Период полураспада

Период полураспада квантовомеханической системы (частицы, ядра, атома, энергетического уровня и т. д.) -- время T Ѕ , в течение которого система распадается с вероятностью 1/2. Если рассматривается ансамбль независимых частиц, то в течение одного периода полураспада количество выживших частиц уменьшится в среднем в 2 раза. Термин применим только к экспоненциально распадающимся системам.

Не следует считать, что за два периода полураспада распадутся все частицы, взятые в начальный момент. Поскольку каждый период полураспада уменьшает число выживших частиц вдвое, за время 2T Ѕ останется четверть от начального числа частиц, за 3T Ѕ -- одна восьмая и т. д. Вообще, доля выживших частиц (или, точнее, вероятность выживания p для данной частицы) зависит от времени t следующим образом:

Период полураспада, среднее время жизни и постоянная распада связаны следующими соотношениями, полученными из закона радиоактивного распада:

Поскольку, период полураспада примерно на 30,7 % короче, чем среднее время жизни.

На практике период полураспада определяют, измеряя активность исследуемого препарата через определенные промежутки времени. Учитывая, что активность препарата пропорциональна количеству атомов распадающегося вещества, и воспользовавшись законом радиоактивного распада, можно вычислить период полураспада данного вещества

Парциальный период полураспада

Если система с периодом полураспада T 1/2 может распадаться по нескольким каналам, для каждого из них можно определить парциальный период полураспада. Пусть вероятность распада по i-му каналу (коэффициент ветвления) равна p i . Тогда парциальный период полураспада по i-му каналу равен

Парциальный имеет смысл периода полураспада, который был бы у данной системы, если «выключить» все каналы распада, кроме i-го. Так как по определению, то для любого канала распада.

Стабильность периода полураспада

Во всех наблюдавшихся случаях (кроме некоторых изотопов, распадающихся путём электронного захвата) период полураспада был постоянным (отдельные сообщения об изменении периода были вызваны недостаточной точностью эксперимента, в частности, неполной очисткой от высокоактивных изотопов). В связи с этим период полураспада считается неизменным. На этом основании строится определение абсолютного геологического возраста горных пород, а такжерадиоуглеродный метод определения возраста биологических останков.

Предположение об изменяемости периода полураспада используется креационистами, а также представителями т. н. «альтернативной науки» для опровержения научной датировки горных пород, остатков живых существ и исторических находок, с целью дальнейшего опровержения научных теорий, построенных с использованием такой датировки. (См., например, статьи Креационизм, Научный креационизм, Критика эволюционизма, Туринская плащаница).

Вариабельность постоянной распада для электронного захвата наблюдалась в эксперименте, но она лежит в пределах процента во всём доступном в лаборатории диапазоне давлений и температур. Период полураспада в этом случае изменяется в связи с некоторой (довольно слабой) зависимостью плотности волновой функции орбитальных электронов в окрестности ядра от давления и температуры. Существенные изменения постоянной распада наблюдались также для сильно ионизованных атомов (так, в предельном случае полностью ионизованного ядра электронный захват может происходить только при взаимодействии ядра со свободными электронами плазмы; кроме того, распад, разрешённый для нейтральных атомов, в некоторых случаях для сильно ионизованных атомов может быть запрещён кинематически). Все эти варианты изменения постоянных распада, очевидно, не могут быть привлечены для «опровержения» радиохронологических датировок, поскольку погрешность самого радиохронометрического метода для большинства изотопов-хронометров составляет более процента, а высокоионизованные атомы в природных объектах на Земле не могут существовать сколько-нибудь длительное время.

Поиск возможных вариаций периодов полураспада радиоактивных изотопов, как в настоящее время, так и в течение миллиардов лет, интересен в связи с гипотезой овариациях значений фундаментальных констант в физике (постоянной тонкой структуры, константы Ферми и т. д.). Однако тщательные измерения пока не принесли результата -- в пределах погрешности эксперимента изменения периодов полураспада не были найдены. Так, было показано, что за 4,6 млрд лет константа б-распада самария-147 изменилась не более чем на 0,75 %, а для в-распада рения-187 изменение за это же время не превышает 0,5 %; в обоих случаях результаты совместимы с отсутствием таких изменений вообще.

Необходимое условие радиоактивного распада заключается в том, что масса исходного ядра должна превышать сумму масс продуктов распада. Поэтому каждый радиоактивный распад происходит с выделением энергии .

Радиоактивность подразделяют на естественную и искусственную. Первая относится к радиоактивным ядрам, существующим в природных условиях, вторая - к ядрам, полученным посредством ядерных реакций в лабораторных условиях. Принципиально они не отличаются друг от друга.

К основным типам радиоактивности относятся α-, β- и γ-распады. Прежде чем характеризовать их более подробно, рассмотрим общий для всех видов радиоактивности закон протекания этих процессов во времени.

Одинаковые ядра претерпевают распад за различные времена, предсказать которые заранее нельзя. Поэтому можно считать, что число ядер, распадающихся за малый промежуток времени dt , пропорционально как числу N имеющихся ядер в этот момент, так и dt :

Интегрирование уравнения (3.4) дает:

Соотношение (3.5) называют основным законом радиоактивного распада. Как видно, число N еще не распавшихся ядер убывает со временем экспоненциально.

Интенсивность радиоактивного распада характеризуют числом ядер, распадающихся в единицу времени. Из (3.4) видно, что эта величина | dN / dt | = λN . Ее называют активностью A . Таким образом активность:

.

Ее измеряют в беккерелях (Бк) , 1 Бк = 1 распад / с; а также в кюри (Ки) , 1 Ки = 3.7∙10 10 Бк.

Активность в расчете на единицу массы радиоактивного препарата называют удельной активностью.

Вернемся к формуле (3.5). Наряду с постоянной λ и активностью A процесс радиоактивного распада характеризуют еще двумя величинами: периодом полураспада T 1/2 и средним временем жизни τ ядра.

Период полураспада T 1/2 - время, за которое исходное число радиоактивных ядер в среднем уменьшится в двое:

,
откуда
.

Среднее время жизни τ определим следующим образом. Число ядер δN (t ), испытавших распад за промежуток времени (t , t + dt ), определяется правой частью выражения (3.4): δN (t ) = λNdt . Время жизни каждого из этих ядер равно t . Значит сумма времен жизни всех N 0 имевшихся первоначально ядер определяется интегрированием выражения tδN (t ) по времени от 0 до ∞. Разделив сумму времен жизни всех N 0 ядер на N 0 , мы и найдем среднее время жизни τ рассматриваемого ядра:

Заметим, что τ равно, как следует из (3.5) промежутку времени, за которое первоначальное количество ядер уменьшается в e раз.

Сравнивая (3.8) и (3.9.2), видим, что период полураспада T 1/2 и среднее время жизни τ имеют один и тот же порядок и связаны между собой соотношением:

.

Сложный радиоактивный распад

Сложный радиоактивный распад может протекать в двух случаях:

Физический смысл этих уравнений состоит в том, что количество ядер 1 убывает за счет их распада, а количество ядер 2 пополняется за счет распада ядер 1 и убывает за счет своего распада. Например, в начальный момент времени t = 0 имеется N 01 ядер 1 и N 02 ядер 2. С такими начальными условиями решение системы имеет вид:

Если при этом N 02 = 0, то

.

Для оценки значения N 2 (t ) можно использовать графический метод (см. рисунок 3.2) построения кривых e −λt и (1 − e −λt ). При этом ввиду особых свойств функции e −λt очень удобно ординаты кривой строить для значений t , соответствующих T , 2T , … и т.д. (см. таблицу 3.1). Соотношение (3.13.3) и рисунок 3.2 показывают, что количество радиоактивного дочернего вещества возрастает с течением времени и при t >> T 2 (λ 2 t >> 1) приближается к своему предельному значению:

и носит название векового , или секулярного равновесия . Физический смысл векового уравнения очевиден.

t e −λt 1 − e −λt
0 1 0
1T 1/2 = 0.5 0.5
2T (1/2) 2 = 0.25 0.75
3T (1/2) 3 = 0.125 0.875
... ... ...
10T (1/2) 10 ≈ 0.001 ~0.999


Рисунок 3.3. Сложный радиоактивный распад.
Так как, согласно уравнению (3.4), λN равно числу распадов в единицу времени, то соотношение λ 1 N 1 = λ 2 N 2 означает, что число распадов дочернего вещества λ 2 N 2 равно числу распадов материнского вещества, т.е. числу образующихся при этом ядер дочернего вещества λ 1 N 1 . Вековое уравнение широко используется для определения периодов полураспада долгоживущих радиоактивных веществ. Этим уравнением можно пользоваться при сравнении двух взаимно превращающихся веществ, из которых второе имеет много меньший период полураспада, чем первое (T 2 << T 1 ) при условии, что это сравнение производится в момент времени t >> T 2 (T 2 << t << T 1 ). Примером последовательного распада двух радиоактивных веществ является превращение радия Ra в радон Rn. Известно, что 88 Ra 226 , испуская с периодом полураспада T 1 >> 1600 лет α-частицы, превращается в радиоактивный газ радон (88 Rn 222), который сам является радиоактивным и испускает α-частицы с периодом полураспада T 2 ≈ 3.8 дня . В этом примере как раз T 1 >> T 2 , так что для моментов времени t << T 1 решение уравнений (3.12) может быть записано в форме (3.13.3).

Для дальнейшего упрощения надо, чтобы начальное количество ядер Rn было равно нулю (N 02 = 0 при t = 0). Это достигается специальной постановкой опыта, в котором изучается процесс превращения Ra в Rn. В этом опыте препарат Ra помещается в стеклянную колбочку с трубкой, соединенной с насосом. Во время работы насоса выделяющийся газообразный Rn сразу же откачивается, и концентрация его в колбочке равна нулю. Если в некоторый момент при работающем насосе изолировать колбочку от насоса, то с этого момента, который можно принять за t = 0, количество ядер Rn в колбочке начнет возрастать по закону (3.13.3):N Ra и N Rn - точным взвешиванием, а λ Rn - по определению периода полураспада Rn, который имеет удобное для измерений значение 3.8 дня . Таким образом, четвертая величина λ Ra может быть вычислена. Это вычисление дает для периода полураспада радия T Ra ≈ 1600 лет , что совпадает с результатами определения T Ra методом абсолютного счета испускаемых α-частиц.

Радиоактивность Ra и Rn была выбрана в качестве эталона при сравнении активностей различных радиоактивных веществ. За единицу радиоактивности - 1 Ки - приняли активность 1 г радия или находящегося с ним в равновесии количества радона. Последнее легко может быть найдено из следующих рассуждений.

Известно, что 1 г радия претерпевает в секунду ~3.7∙10 10 распадов . Следовательно.