Закон изменения активности при радиоактивном распаде. Основной закон радиоактивного распада

Необходимое условие радиоактивного распада заключается в том, что масса исходного ядра должна превышать сумму масс продуктов распада. Поэтому каждый радиоактивный распад происходит с выделением энергии .

Радиоактивность подразделяют на естественную и искусственную. Первая относится к радиоактивным ядрам, существующим в природных условиях, вторая - к ядрам, полученным посредством ядерных реакций в лабораторных условиях. Принципиально они не отличаются друг от друга.

К основным типам радиоактивности относятся α-, β- и γ-распады. Прежде чем характеризовать их более подробно, рассмотрим общий для всех видов радиоактивности закон протекания этих процессов во времени.

Одинаковые ядра претерпевают распад за различные времена, предсказать которые заранее нельзя. Поэтому можно считать, что число ядер, распадающихся за малый промежуток времени dt , пропорционально как числу N имеющихся ядер в этот момент, так и dt :

Интегрирование уравнения (3.4) дает:

Соотношение (3.5) называют основным законом радиоактивного распада. Как видно, число N еще не распавшихся ядер убывает со временем экспоненциально.

Интенсивность радиоактивного распада характеризуют числом ядер, распадающихся в единицу времени. Из (3.4) видно, что эта величина | dN / dt | = λN . Ее называют активностью A . Таким образом активность:

.

Ее измеряют в беккерелях (Бк) , 1 Бк = 1 распад / с; а также в кюри (Ки) , 1 Ки = 3.7∙10 10 Бк.

Активность в расчете на единицу массы радиоактивного препарата называют удельной активностью.

Вернемся к формуле (3.5). Наряду с постоянной λ и активностью A процесс радиоактивного распада характеризуют еще двумя величинами: периодом полураспада T 1/2 и средним временем жизни τ ядра.

Период полураспада T 1/2 - время, за которое исходное число радиоактивных ядер в среднем уменьшится в двое:

,
откуда
.

Среднее время жизни τ определим следующим образом. Число ядер δN (t ), испытавших распад за промежуток времени (t , t + dt ), определяется правой частью выражения (3.4): δN (t ) = λNdt . Время жизни каждого из этих ядер равно t . Значит сумма времен жизни всех N 0 имевшихся первоначально ядер определяется интегрированием выражения tδN (t ) по времени от 0 до ∞. Разделив сумму времен жизни всех N 0 ядер на N 0 , мы и найдем среднее время жизни τ рассматриваемого ядра:

Заметим, что τ равно, как следует из (3.5) промежутку времени, за которое первоначальное количество ядер уменьшается в e раз.

Сравнивая (3.8) и (3.9.2), видим, что период полураспада T 1/2 и среднее время жизни τ имеют один и тот же порядок и связаны между собой соотношением:

.

Сложный радиоактивный распад

Сложный радиоактивный распад может протекать в двух случаях:

Физический смысл этих уравнений состоит в том, что количество ядер 1 убывает за счет их распада, а количество ядер 2 пополняется за счет распада ядер 1 и убывает за счет своего распада. Например, в начальный момент времени t = 0 имеется N 01 ядер 1 и N 02 ядер 2. С такими начальными условиями решение системы имеет вид:

Если при этом N 02 = 0, то

.

Для оценки значения N 2 (t ) можно использовать графический метод (см. рисунок 3.2) построения кривых e −λt и (1 − e −λt ). При этом ввиду особых свойств функции e −λt очень удобно ординаты кривой строить для значений t , соответствующих T , 2T , … и т.д. (см. таблицу 3.1). Соотношение (3.13.3) и рисунок 3.2 показывают, что количество радиоактивного дочернего вещества возрастает с течением времени и при t >> T 2 (λ 2 t >> 1) приближается к своему предельному значению:

и носит название векового , или секулярного равновесия . Физический смысл векового уравнения очевиден.

t e −λt 1 − e −λt
0 1 0
1T 1/2 = 0.5 0.5
2T (1/2) 2 = 0.25 0.75
3T (1/2) 3 = 0.125 0.875
... ... ...
10T (1/2) 10 ≈ 0.001 ~0.999


Рисунок 3.3. Сложный радиоактивный распад.
Так как, согласно уравнению (3.4), λN равно числу распадов в единицу времени, то соотношение λ 1 N 1 = λ 2 N 2 означает, что число распадов дочернего вещества λ 2 N 2 равно числу распадов материнского вещества, т.е. числу образующихся при этом ядер дочернего вещества λ 1 N 1 . Вековое уравнение широко используется для определения периодов полураспада долгоживущих радиоактивных веществ. Этим уравнением можно пользоваться при сравнении двух взаимно превращающихся веществ, из которых второе имеет много меньший период полураспада, чем первое (T 2 << T 1 ) при условии, что это сравнение производится в момент времени t >> T 2 (T 2 << t << T 1 ). Примером последовательного распада двух радиоактивных веществ является превращение радия Ra в радон Rn. Известно, что 88 Ra 226 , испуская с периодом полураспада T 1 >> 1600 лет α-частицы, превращается в радиоактивный газ радон (88 Rn 222), который сам является радиоактивным и испускает α-частицы с периодом полураспада T 2 ≈ 3.8 дня . В этом примере как раз T 1 >> T 2 , так что для моментов времени t << T 1 решение уравнений (3.12) может быть записано в форме (3.13.3).

Для дальнейшего упрощения надо, чтобы начальное количество ядер Rn было равно нулю (N 02 = 0 при t = 0). Это достигается специальной постановкой опыта, в котором изучается процесс превращения Ra в Rn. В этом опыте препарат Ra помещается в стеклянную колбочку с трубкой, соединенной с насосом. Во время работы насоса выделяющийся газообразный Rn сразу же откачивается, и концентрация его в колбочке равна нулю. Если в некоторый момент при работающем насосе изолировать колбочку от насоса, то с этого момента, который можно принять за t = 0, количество ядер Rn в колбочке начнет возрастать по закону (3.13.3):N Ra и N Rn - точным взвешиванием, а λ Rn - по определению периода полураспада Rn, который имеет удобное для измерений значение 3.8 дня . Таким образом, четвертая величина λ Ra может быть вычислена. Это вычисление дает для периода полураспада радия T Ra ≈ 1600 лет , что совпадает с результатами определения T Ra методом абсолютного счета испускаемых α-частиц.

Радиоактивность Ra и Rn была выбрана в качестве эталона при сравнении активностей различных радиоактивных веществ. За единицу радиоактивности - 1 Ки - приняли активность 1 г радия или находящегося с ним в равновесии количества радона. Последнее легко может быть найдено из следующих рассуждений.

Известно, что 1 г радия претерпевает в секунду ~3.7∙10 10 распадов . Следовательно.

Изменение числа радиоактивных ядер во времени. Резерфорд и Содди в 1911 г., обобщая экспериментальные результаты, показали, что атомы некоторых элементов испытывают последовательные превращения, образуя радиоактивные семейства, где каждый член возникает из предыдущего и, в свою очередь, образует последующий.

Это удобно проиллюстрировать на примере образования радона из радия. Если поместить в запаянную ампулу то анализ газа через несколько дней покажет, что в нем появляется гелий и радон. Гелий устойчив, и поэтому он накапливается, радон же сам распадается. Кривая 1 на рис. 29 характеризует закон распада радона в отсутствие радия. При этом на оси ординат отложено отношение числа нераспавшихся ядер радона к их начальному числу Видно, что убывание содержания идет по экспоненциальному закону. Кривая 2 показывает, как изменяется число радиоактивных ядер радона в присутствии радия.

Опыты, проведенные с радиоактивными веществами, показали, что никакие внешние условия (нагревание до высоких температур,

магнитные и электрические поля, большие давления) не могут повлиять на характер и скорость распада.

Радиоактивность является свойством атомного ядра и для данного типа ядер, находящихся в определенном энергетическом состоянии, вероятность радиоактивного распада за единицу времени постоянна.

Рис. 29. Зависимость числа активных ядер радона от времени

Так как процесс распада самопроизвольный (спонтанный), то изменение числа ядер из-за распада за промежуток времени определяется только количеством радиоактивных ядер в момент и пропорционально промежутку времени

где постоянная, характеризующая скорость распада. Интегрируя (37) и считая, что получаем

т. е. число ядер убывает по экспоненциальному закону.

Этот закон относится к статистическим средним величинам и справедлив лишь при достаточно большом числе частиц. Величина X называется постоянной радиоактивного распада, имеет размерность и характеризует вероятность распада одного атома в одну секунду.

Для характеристики радиоактивных элементов вводится также понятие периода полураспада Под ним понимается время, в течение которого распадается половина наличного числа атомов. Подставляя условие в уравнение (38), получим

откуда, логарифмируя, найдем, что

и период полураспада

При экспоненциальном законе радиоактивного распада в любой момент времени имеется отличная от нуля вероятность найти еще не распавшиеся ядра. Время жизни этих ядер превышает

Наоборот, другие ядра, распавшиеся к этому времени, прожили разное время, меньшее Среднее время жизни для данного радиоактивного изотопа определяется как

Обозначив получим

Следовательно, среднее время жизни радиоактивного ядра равно обратной величине от постоянной распада Я. За время первоначальное число ядер уменьшается в раз.

Для обработки экспериментальных результатов удобно представить уравнение (38) в другой форме:

Величина называется активностью данного радиоактивного препарата, она определяет число распадов в секунду. Активность является характеристикой всего распадающегося вещества, а не отдельного ядра. Практической единицей активности является кюри. 1 кюри равно ислу распавшихся ядер содержащихся в радия за 1 сек распадов/сек). Используются и более мелкие единицы - милликюри и микрокюри . В практике физического эксперимента используется иногда другая единица активности - Резерфорд распадов/сек.

Статистический характер радиоактивного распада. Радиоактивный распад - явление принципиально статистическое. Мы не можем сказать, когда именно распадется данное ядро, а можем лишь указать, с какой вероятностью оно распадается за тот или иной промежуток времени.

Радиоактивные ядра не «стареют» в процессе своего существования. К ним вообще неприменимо понятие возраста, а можно лишь говорить о среднем времени их жизни.

Из статистического характера закона радиоактивного распада следует, что он выполняется строго, когда велико, а при небольших должны наблюдаться флуктуации. Число распадающихся ядер в единицу времени должно флуктуировать вокруг среднего значения, харак теризуемого приведенным выше законом. Это подтверждается экспериментальными измерениями числа -частиц, испускаемых радиоактивным веществом в единицу времени.

Рис. 30. Зависимость логарифма активности от времени

Флуктуации подчиняются закону Пуассона. Производя измерения с радиоактивными препаратами, надо всегда это учитывать и определять статистическую точность опытных результатов.

Определение постоянной распада X. При определении постоянной распада X радиоактивного элемента опыт сводится к регистрации числа частиц, вылетающих из препарата за единицу времени, т. е. определяется его активность Затем строится график изменения активности со временем, обычно в полулогарифмическом масштабе. Вид получаемых зависимостей при исследованиях чистого изотопа, смеси изотопов или радиоактивного семейства оказывается различным.

Рассмотрим в качестве примера несколько случаев.

1. Исследуется один радиоактивный элемент, при распаде которого образуются стабильные ядра. Логарифмируя выражение (41), получим

Следовательно, в этом случае логарифм активности является линейной функцией времени. График этой зависимости имеет вид прямой, тангенс угла наклона которой (рис. 30)

2. Исследуется радиоактивное семейство, в котором происходит целая цепь радиоактивных превращений. Ядра, получающиеся после распада, в свою очередь сами оказываются радиоактивными:

Примером такой цепочки может служить распад:

Найдем закон, описывающий в этом случае изменение числа радиоактивных атомов во времени. Для простоты выделим всего два элемента: считая А исходным, а В промежуточным.

Тогда изменение числа ядер А и ядер В определится из системы уравнений

Количество ядер А убывает за счет их распада, а количество ядер В убывает из-за распада ядер В и возрастает за счет распада ядер А.

Если при имеется ядер А, а ядер В нет, то начальные условия запишутся в виде

Решение уравнений (43) имеет вид

и полная активность источника, состоящего из ядер А и В:

Рассмотрим теперь зависимость логарифма радиоактивности от времени при разных соотношениях между и

1. Первый элемент короткоживущий, второй - долгоживущий, т. е. . В этом случае кривая, показывающая изменение суммарной активности источника, имеет вид, представленный на рис. 31, а. В начале ход кривой определяется в основном быстрым уменьшением числа активных ядер ядра В тоже распадаются, но медленно, и поэтому их распад не очень сильно влияет на наклон кривой на участке . В дальнейшем ядер типа А остается в смеси изотопов мало, и наклон кривой определяется постоянной распада Если нужно найти и то по наклону кривой при большом значении времени находят (в выражении (45) первый экспоненциальный член в этом случае может быть отброшен). Для определения величины надо учесть также влияние распада долгоживущего элемента на наклон первой части кривой. Для этого экстраполируют прямую в область малых времен, в нескольких точках вычитают из суммарной активности активность, определяемую элементом В, по полученным значениям

строят прямую для элемента А и по углу находят (при этом надо переходить от логарифмов к антилогарифмам и обратно).

Рис. 31. Зависимость логарифма активности смеси двух радиоактивных веществ от времени: а - при при

2. Первый элемент долгоживущий, а второй короткоживущий: Зависимость в этом случае имеет вид, представленный на рис. 31,б. В начале активность препарата увеличивается за счет накопления ядер В. Затем наступает радиоактивное равновесие, при котором отношение числа ядер А к числу ядер В становится постоянным. Этот тип равновесия называется переходным. Спустя некоторое время, оба вещества начинают убывать со скоростью распада материнского элемента.

3. Период полураспада первого изотопа много больше второго (следует заметить, что период полураспада некоторых изотопов измеряется миллионами лет). В этом случае через время устанавливается так называемое вековое равновесие, при котором количество ядер каждого изотопа пропорционально периоду полураспада этого изотопа. Соотношение

>> Закон радиоактивного распада. Период полураспада

§ 101 ЗАКОН РАДИОАКТИВНОГО РАСПАДА. ПЕРИОД ПОЛУРАСПАДА

Радиоактивный распад подчиняется статистическому закону. Резерфорд , исследуя превращения радиоактивных веществ, установил опытным путем, что их активность убывает с течением времени. Об этом говорилось в предыдущем параграфе. Так, активность радона убывает в 2 раза уже через 1 мин. Активность таких элементов, как уран, торий и радий, тоже убывает со временем, но гораздо медленнее. Для каждого радиоактивного вещества существует определенный интервал времени, на протяжении которого активность убывает в 2 раза. Этот интервал носит название период полураспада. Период полураспада Т - это время, в течение которого распадается половина начального числа радиоактивных атомов.

Спад активности, т. е. числа распадов в секунду, в зависимости от времени для одного из радиоактивных препаратов изображен на рисунке 13.8. Период полураспада этого вещества равен 5 сут.

Выведем теперь математическую форму закона радиоактивного распада. Пусть число радиоактивных атомов в начальный момент времени (t= 0) равно N 0 . Тогда по истечении периода полураспада это число будет равно

Спустя еще один такой же интервал времени это число станет равным:

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Радиоактивный распад ядер одного и того же элемента происходит постепенно и с разной скоростью для разных радиоактивных элементов. Нельзя указать заранее момент распада ядра, но можно установить вероятность распада одного ядра за единицу времени. Вероятность распада характеризуется коэффициентом "λ" - постоянной распада, который зависит только от природы элемента.

Закон радиоактивного распада. (Слайд 32)

Экспериментально установлено, что:

За равные промежутки времени распадается одинаковая доля наличных (т.е. еще не распавшихся к началу данного промежутка) ядер данного элемента.

Дифференциальная форма закона радиоактивного распада. (слайд 33)

Устанавливает зависимость количества не распавшихся атомов в данный момент времени от начального количества атомов в нулевой момент начала отсчета, а так же от времени распада"t" и постоянной распада "λ".

N t - наличное количество ядер.

dN - убыль наличного количества атомов;

dt - время распада.

dN ~ N t · dt Þ dN = –λ N t dt

"λ" - коэффициент пропорциональности, постоянная распада, характеризует долю наличных, еще не распавшихся ядер;

"–" - говорит том, что с течением времени количество распадающихся атомов уменьшается.

Следствие № 1: (слайд 34)

λ = –dN/N t · dt - относительная скорость радиоактивного распада для данного вещества есть величина постоянная.

Следствие № 2:

dN/N t = – λ · Nt - абсолютная скорость радиоактивного распада пропорциональна количеству не распавшихся ядер к моменту времени dt. Она не является "const", т.к. уменьшатся с течением времени.

4. Интегральная форма закона радиоактивного распада. (слайд 35)

Устанавливает зависимость числа оставшихся атомов в данный момент времени (N t) от их исходного количества (N o), времени (t) и постоянной распада "λ". Интегральная форма получается из дифференциальной:

1. Разделим переменные:

2. Проинтегрируем обе части равенства:

3. Найдем интегралы Þ -общее решение

4. Найдем частное решение:

Если t = t 0 = 0 Þ N t = N 0 , подставим эти условия в общее решение

(начало (исходное число

распада) атомов)

Þ Таким образом:

интегральная форма закона р/акт. распада

N t - число не распавшихся атомов к моменту времени t ;

N 0 - исходное число атомов при t = 0 ;

λ - постоянная распада;

t - время распада

Вывод: Наличное количество не распавшихся атомов ~ исходному количеству и убывает с течением времени по экспоненциальному закону. (слайд 37)

Nt= N 0 ·2 λ 1 λ 2 >λ 1 Nt = N 0 ·e λ · t

5. Период полураспада и его связь с постоянной распада. (слайд 38,39)

Период полураспада (Т) - это время, в течение которого распадается половина исходного числа радиоактивных ядер.

Он характеризует скорость распада различных элементов.

Основные условия определения "Т":

1. t = Т - период полураспада.

2. - половина от исходного числа ядер за "Т".

Формулу связи можно получить, если эти условия подставить в интегральную форму закона радиоактивного распада

1.

2. Сократим «N 0 ». Þ

3.

4. Потенцируем.

Þ

5.

Период полураспада изотопов различается в широких пределах: (слайд40)

238 U ® T = 4,51· 10 9 лет

60 Co ® T = 5,3 года

24 Na ® T = 15,06 часов

8 Li ® T = 0,84 c

6. Активность. Её виды, единицы измерения и количественная оценка. Формула активности. (слайд 41)

На практике основное значение имеет общее число распадов, приходящихся в источнике радиоактивного излучения в единицу времени => количественно меру распада определяют активностью радиоактивного вещества.

Активность (А) зависит от относительной скорости распада "λ" и от наличного числа ядер (т.е. от массы изотопа).

"А" - характеризует абсолютную скорость распада изотопа.

3 варианта записи формулы активности: (слайд 42,43)

I. Из закона радиоактивного распада в дифференциальной форме следует:

Þ

активность (абсолютная скорость радиоактивного распада).

активность

II. Из закона радиоактивного распада в интегральной форме следует:

1. (домножим обе части равенства на «λ»).

Þ

2. ; ( исходная активность при t = 0)

3. убыль активности идет по экспоненциальному закону

III. При использовании формулы связи постоянной распада "λ" с периодом полураспада "Т" следует:

1. (домножим обе части равенства на «N t », что бы получить активность). Þ и получаем формулу для активности

2.

Единицы измерения активности: (слайд 44)

А. Системные единицы измерения.

A = dN/dt

1[расп/с] = 1[Бк] – беккерель

1Мрасп/с =10 6 расп/с = 1 [Рд] - резерфорд

Б. Внесистемные единицы измерения.

[Ки] - кюри (соответствует активности 1г радия).

1[Ки] = 3,7 · 10 10 [расп/с] - в 1г радия за 1с распадается 3,7· 10 10 радиоактивных ядер.

Виды активности: (слайд 45)

1. Удельная - это активность единицы массы вещества.

А уд. = dA/dm [Бк/кг].

Её используют для характеристики порошкообразных и газообразных веществ.

2. Объёмная - это активность в единице объёма вещества или среды.

А об = dA/dV [Бк/м 3 ]

Её используют для характеристики жидких веществ.

На практике убыль активности измеряется с помощью специальных радиометрических приборов. Например, зная активность препарата и продукта, образующегося при распаде 1 ядра, можно вычислить, сколько частиц каждого вида испускает препарат за 1 секунду.

Если при делении ядра образуется нейтронов"n", то за 1с испускается поток нейтронов "N". N = n · А.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-08-08

§ 15-ж. Закон радиоактивного распада

Появление «ручных» сцинтилляционных счетчиков и, главным образом, счётчиков Гейгера–Мюллера, которые помогли автоматизировать подсчёты частиц (см. § 15-е), привело физиков к важному выводу. Любой радиоактивный изотоп характеризуется самопроизвольным ослабеванием радиоактивности, выражающимся в уменьшении количества распадающихся ядер в единицу времени.

Построение графиков активности различных радиоактивных изотопов приводило учёных к одной и той же зависимости, выражающейся показательной функцией (см. график). По горизонтальной оси отложено время наблюдения, а по вертикальной – количество нераспавшихся ядер. Кривизна линий могла быть различной, однако сама функция, которой выражались описываемые графиками зависимости, оставалась одной и той же:

Эта формула выражает закон радиоактивного распада: количество нераспавшихся с течением времени ядер определяется как произведение начального количества ядер на 2 в степени, равной отношению времени наблюдения к периоду полураспада, взятой с отрицательным знаком.

Как выяснилось в ходе опытов, различные радиоактивные вещества можно охарактеризовать различным периодом полураспада – временем, за которое количество ещё нераспавшихся ядер уменьшается вдвое (см. таблицу).

Периоды полураспада некоторых изотопов некоторых химических элементов. Приведены значения как для естественных, так и для искусственных изотопов.

Йод-129 15 млн лет Углерод-14 5,7 тыс лет
Йод-131 8 дней Уран-235 0,7 млрд лет
Йод-135 7 часов Уран-238 4,5 млрд лет

Период полураспада – общепринятая физическая величина, характеризующая скорость радиоактивного распада. Многочисленные опыты показывают, что даже при очень длительном наблюдении за радиоактивным веществом его период полураспада постоянен, то есть не зависит от числа уже распавшихся атомов. Поэтому закон радиоактивного распада нашёл применение в методе определения возраста археологических и геологических находок.

Метод радиоуглеродного анализа. Углерод – очень распространённый на Земле химический элемент, в состав которого входят стабильные изотопы углерод-12, углерод-13 и радиоактивный изотоп углерод-14, период полураспада которого составляет 5,7 тысяч лет (см. таблицу). Живые организмы, потребляя пищу, накапливают в своих тканях все три изотопа. После прекращения жизни организма поступление углерода прекращается, и с течением времени его содержание убывает естественным путём, за счёт радиоактивного распада. Поскольку распадается только углерод-14, с течением веков и тысячелетий изменяется соотношение изотопов углерода в ископаемых останках живых организмов. Измерив эту «углеродную пропорцию», можно судить о возрасте археологической находки.

Метод радиоуглеродного анализа применим и для геологических пород, а также для ископаемых предметов быта человека, но при условии, что соотношение изотопов в образце не было нарушено за время его существования, например, пожаром или действием сильного источника радиации. Неучёт подобных причин сразу после открытия этого метода приводил к ошибкам на несколько веков и тысячелетий. Сегодня применяются «вековые калибровочные шкалы» для изотопа углерода-14, исходя из его распределения в долгоживущих деревьях (например, в американской тысячелетней секвойе). Их возраст можно подсчитать весьма точно – по годовым кольцам древесины.

Предел применения метода радиоуглеродного анализа в начале XXI века составлял 60 000 лет. Для измерения возраста более древних образцов, например горных пород или метеоритов, используют аналогичный метод, но вместо углерода наблюдают за изотопами урана или других элементов в зависимости от происхождения исследуемого образца.

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!