Зависимость ускорения от времени. Лекции физика

Графическое представление равноускоренного прямолинейного движения.

Перемещение при равноускоренном движении.

I уровень.

Многие физические величины, описывающие движения тел, с течением времени изменяются. Поэтому для большей наглядности описания движение часто изображают графически.

Покажем, как графически изображаются зависимости от времени кинематических величин, описывающих прямолинейное равноускоренное движения.

Равноускоренное прямолинейное движение - это движение, при котором скорость тела за любые равные промежутки времени изменяется одинаково, т. е. это движение с постоянным по модулю и направлению ускорением.

a=const - уравнение ускорения. Т. е а имеет численное значение, которое не изменяется со временем.

По определению ускорения

Отсюда мы уже нашли уравнения для зависимости скорости от времени: v = v0 + at.

Посмотрим, как это уравнение можно использовать для графического представления равноускоренного движения.

Изобразим графически зависимости кинематических величин от времени для трех тел

.

1 тело движется вдоль оси 0Х, при этом увеличивает свою скорость (вектор ускорения а сонаправленн с вектором скорости v). vx >0, ах > 0

2 тело движется вдоль оси 0Х, при этом уменьшает свою скорость (вектор ускорения а не сонаправленн с вектором скорости v). vx >0, ах < 0

2 тело движется против оси 0Х, при этом уменьшает свою скорость (вектор ускорения а не сонаправленн с вектором скорости v). vx < 0, ах > 0

График ускорения

Ускорение по определению величина постоянная. Тогда для представленной ситуации график зависимости ускорения от времени a(t) будет иметь вид:

Из графика ускорения можно определить как изменялась скорость – увеличивалась или уменьшалась и на какое численное значение изменилась скорость и у какого тела скорость больше изменилась.

График скорости

Если сравнить зависимость координаты от времени при равномерном движении и зависимость проекции скорости от времени при равноускоренном движении, можно увидеть, что эти зависимости одинаковы:

х= х0 + vx t vx = v 0 x + a х t

Это значит, что и графики зависимостей имеют одинаковый вид.

Для построения этого графика на оси абсцисс откладывают время движения, а на оси ординат - скорость (проекцию скорости) тела. В равноускоренном движении скорость тела с течением времени изменяется.

Перемещение при равноускоренном движении.

При равноускоренном прямолинейном движении скорость тела определяется формулой

vx = v 0 x + a х t

В этой формуле υ0 – скорость тела при t = 0 (начальная скорость ), a = const – ускорение. На графике скорости υ (t ) эта зависимость имеет вид прямой линии (рис.).

По наклону графика скорости может быть определено ускорение a тела. Соответствующие построения выполнены на рис. для графика I. Ускорение численно равно отношению сторон треугольника ABC : MsoNormalTable">

Чем больше угол β, который образует график скорости с осью времени, т. е. чем больше наклон графика (крутизна ), тем больше ускорение тела.

Для графика I: υ0 = –2 м/с, a = 1/2 м/с2.

Для графика II: υ0 = 3 м/с, a = –1/3 м/с2.

График скорости позволяет также определить проекцию перемещения s тела за некоторое время t . Выделим на оси времени некоторый малый промежуток времени Δt . Если этот промежуток времени достаточно мал, то и изменение скорости за этот промежуток невелико, т. е. движение в течение этого промежутка времени можно считать равномерным с некоторой средней скоростью, которая равна мгновенной скорости υ тела в середине промежутка Δt . Следовательно, перемещение Δs за время Δt будет равно Δs = υΔt . Это перемещение равно площади заштрихованной полоски (рис.). Разбив промежуток времени от 0 до некоторого момента t на малые промежутки Δt , получим, что перемещение s за заданное время t при равноускоренном прямолинейном движении равно площади трапеции ODEF . Соответствующие построения выполнены для графика II на рис. 1.4.2. Время t принято равным 5,5 с.

Так как υ – υ0 = at s t запишется в виде:

Для нахождения координаты y тела в любой момент времени t нужно к начальной координате y 0 прибавить перемещение за время t : DIV_ADBLOCK189">

Так как υ – υ0 = at , окончательная формула для перемещения s тела при равномерно ускоренном движении на промежутке времени от 0 до t запишется в виде: https://pandia.ru/text/78/516/images/image009_57.gif" width="146 height=55" height="55">

При анализе равноускоренного движения иногда возникает задача определения перемещения тела по заданным значениям начальной υ0 и конечной υ скоростей и ускорения a . Эта задача может быть решена с помощью уравнений, написанных выше, путем исключения из них времени t . Результат записывается в виде

Если начальная скорость υ0 равна нулю, эти формулы принимают вид MsoNormalTable">

Следует еще раз обратить внимание на то, что входящие в формулы равноускоренного прямолинейного движения величины υ0, υ, s , a , y 0 являются величинами алгебраическими. В зависимости от конкретного вида движения каждая из этих величин может принимать как положительные, так и отрицательные значения.

Пример решения задачи:

Петя съезжает со склона горы из состояния покоя с ускорением 0,5 м/с2 за 20 с и дальше движется по горизонтальному участку. Проехав 40 м, он врезается в зазевавщегося Васю и падает в сугроб, снизив свою скорость до 0м/с. С каким ускорением двигался Петя по горизонтальной поверхности до сугроба? Какова длина склона горы, с которой так неудачно съехал Петя?

Дано :

a 1 = 0,5 м/с2

t 1 = 20 с

s 2 = 40 м

Движение Пети состоит из двух этапов: на первом этапе, спускаясь со склона горы, он движется с возрастающей по модулю скоростью; на втором этапе при движении по горизонтальной поверхности его скорость уменьшается до нуля (столкнулся с Васей). Величины, относящиеся к первому этапу движения, запишем с индексом 1, а ко второму этапу с индексом 2.

1 этап.

Уравнение для скорости Пети в конце спуска с горы:

v 1 = v 01 + a 1t 1.

В проекциях на ось X получим:

v 1x = a 1x t .

Запишем уравнение, связывающее проекции скорости, ускорения и перемещения Пети на первом этапе движения:

или т. к. Петя ехал с самого верха горки с начальной скоростью V01=0

(на месте Пети, я бы поостереглась ездить с таких высоких горок)

Учитывая, что начальная скорость Пети на этом 2 этапе движения равна его конечной скорости на первом этапе:

v 02 x = v 1 x , v 2x = 0, где v1 – скорость с которой Петя достиг подножия горки и начал двигаться к Васе. V2x - скорость Пети в сугробе.

2. По данному графику ускорения расскажите как меняется скорость тела. Запишите уравнения зависимости скорости от времени, если на момент начала движения (t=0) скорость тела v0х =0. Обратите внимание, что каждый последующий участок движения, тело начинает проходить с уже какой-либо скоростью (которая была достигнута за предыдущее время!).

3. Поезд метро, отходя от станции, может развить скорость 72 км/ч за 20 с. Определить с каким ускорением удаляется от вас сумка, забытая в вагоне метро. Какой путь при этом она проедет?

4. Велосипедист, движущийся со скоростью 3 м/с, начинает спускаться с горы с ускорением 0,8 м/с2. Найдите длину го­ры, если спуск занял 6 с.

5. Начав торможение с ускорением 0,5 м/с2, поезд прошел до остановки 225 м. Какова была его скорость перед началом торможения?

6. Начав двигаться, футбольный мяч достиг скорости 50 м/с, пройдя путь 50 м и врезался в окно. Определите время, за которое мяч прошел этот путь, и ускорение, с которым он двигался.

7. Время реакции соседа дяди Олега = 1,5 мин, за это время он сообразит, что случилось с его окном и успеет выбежать во двор. Определите какую скорость должны развить юные футболисты, что бы радостные владельцы окна их не догнали, если до своего подъезда им нужно бежать 350 м.

8. Два велосипедиста еду навстречу друг другу. Первый, имея скорость 36 км/ч, начал подниматься в гору с ускоре­нием 0,2 м/с2, а второй, имея скорость 9 км/ч, стал спус­каться с горы с ускорением 0,2 м/с2. Через сколько времени и в каком месте они столкнуться из-за своей рассеянности, если длина горы 100 м?

Равномерное прямолинейное движение – это частный случай неравномерного движения.

Неравномерное движение – это движение, при котором тело (материальная точка) за равные промежутки времени совершает неодинаковые перемещения. Например, городской автобус движется неравномерно, так как его движение состоит в основном из разгонов и торможений.

Равнопеременное движение – это движение, при котором скорость тела (материальной точки) за любые равные промежутки времени изменяется одинаково.

Ускорение тела при равнопеременном движении остаётся постоянным по модулю и по направлению (a = const).

Равнопеременное движение может быть равноускоренным или равнозамедленным.

Равноускоренное движение – это движение тела (материальной точки) с положительным ускорением, то есть при таком движении тело разгоняется с неизменным ускорением. В случае равноускоренного движения модуль скорости тела с течением времени возрастает, направление ускорения совпадает с направлением скорости движения.

Равнозамедленное движение – это движение тела (материальной точки) с отрицательным ускорением, то есть при таком движении тело равномерно замедляется. При равнозамедленном движении векторы скорости и ускорения противоположны, а модуль скорости с течением времени уменьшается.

В механике любое прямолинейное движение является ускоренным, поэтому замедленное движение отличается от ускоренного лишь знаком проекции вектора ускорения на выбранную ось системы координат.

Средняя скорость переменного движения определяется путём деления перемещения тела на время, в течение которого это перемещение было совершено. Единица измерения средней скорости – м/с.

V cp = s / t

– это скорость тела (материальной точки) в данный момент времени или в данной точке траектории, то есть предел, к которому стремится средняя скорость при бесконечном уменьшении промежутка времени Δt:

Вектор мгновенной скорости равнопеременного движения можно найти как первую производную от вектора перемещения по времени:

Проекция вектора скорости на ось ОХ:

V x = x’

это производная от координаты по времени (аналогично получают проекции вектора скорости на другие координатные оси).

– это величина, которая определяет быстроту изменения скорости тела, то есть предел, к которому стремится изменение скорости при бесконечном уменьшении промежутка времени Δt:

Вектор ускорения равнопеременного движения можно найти как первую производную от вектора скорости по времени или как вторую производную от вектора перемещения по времени:

Если тело движется прямолинейно вдоль оси ОХ прямолинейной декартовой системы координат, совпадающей по направлению с траекторией тела, то проекция вектора скорости на эту ось определяется формулой:

V x = v 0x ± a x t

Знак «-» (минус) перед проекцией вектора ускорения относится к равнозамедленному движению. Аналогично записываются уравнения проекций вектора скорости на другие оси координат.

Так как при равнопеременном движении ускорение является постоянным (a = const), то график ускорения – это прямая, параллельная оси 0t (оси времени, рис. 1.15).

Рис. 1.15. Зависимость ускорения тела от времени.

Зависимость скорости от времени – это линейная функция, графиком которой является прямая линия (рис. 1.16).

Рис. 1.16. Зависимость скорости тела от времени.

График зависимости скорости от времени (рис. 1.16) показывает, что

При этом перемещение численно равно площади фигуры 0abc (рис. 1.16).

Площадь трапеции равна произведению полусуммы длин её оснований на высоту. Основания трапеции 0abc численно равны:

0a = v 0 bc = v

Высота трапеции равна t. Таким образом, площадь трапеции, а значит, и проекция перемещения на ось ОХ равна:

В случае равнозамедленного движения проекция ускорения отрицательна и в формуле для проекции перемещения перед ускорением ставится знак «–» (минус).

График зависимости скорости тела от времени при различных ускорениях показан на рис. 1.17. График зависимости перемещения от времени при v0 = 0 показан на рис. 1.18.

Рис. 1.17. Зависимость скорости тела от времени для различных значений ускорения.

Рис. 1.18. Зависимость перемещения тела от времени.

Скорость тела в данный момент времени t 1 равна тангенсу угла наклона между касательной к графику и осью времени v = tg α, а перемещение определяют по формуле:

Если время движения тела неизвестно, можно использовать другую формулу перемещения, решая систему из двух уравнений:

Поможет нам вывести формулу для проекции перемещения:

Так как координата тела в любой момент времени определяется суммой начальной координаты и проекции перемещения, то будет выглядеть следующим образом:

Графиком координаты x(t) также является парабола (как и график перемещения), но вершина параболы в общем случае не совпадает с началом координат. При а x < 0 и х 0 = 0 ветви параболы направлены вниз (рис. 1.18).

Для построения этого графика на оси абсцисс откладывают время движения, а на оси ординат - скорость (проекцию скорости) тела. В равноускоренном движении скорость тела с течением времени изменяется. Если тело движется вдоль оси О х, зависимость его скорости от времени выражается формулами
v x =v 0x +a x t и v x =at (при v 0x = 0).

Из этих формул видно, что зависимость v х от t линейная, следовательно, графиком скорости является прямая линия. Если тело движется с некоторой начальной скоростью, эта прямая пересекает ось ординат в точке v 0x . Если же начальная скорость тела равна нулю, график скорости проходит через начало координат.

Графики скорости прямолинейного равноускоренного движения изображены на рис. 9. На этом рисунке графики 1 и 2 соответствуют движению с положительной проекцией ускорения на ось О х (скорость увеличивается), а график 3 соответствует движению с отрицательной проекцией ускорения (скорость уменьшается). График 2 соответствует движению без начальной скорости, а графики 1 и 3 - движению с начальной скоростью v ox . Угол наклона a графика к оси абсцисс зависит от ускорения движения тела. Как видно из рис. 10 и формулы (1.10),

tg=(v x -v 0x)/t=a x .

По графикам скорости можно определить путь, пройденный телом за промежуток времени t. Для этого определим площадь трапеции и треугольника, закрашенных на рис. 11.

В выбранном масштабе одно основание трапеции численно равно модулю проекции начальной скорости v 0x тела, а другое ее основание - модулю прокции его скорости v х в момент времени t. Высота трапеции численно равна длительности промежутка времени t. Площадь трапеции

S=(v 0x +v x)/2t.

Использовав формулу (1.11), после преобразований находим, что площадь трапеции

S=v 0x t+at 2 /2.

путь, пройденный в прямолинейном равноускоренном движении с начальной скоростью, численно равен площади трапеции, ограниченной графиком скорости, осями координат и ординатой, соответствующей значению скорости тела в момент времени t.

В выбранном масштабе высота треугольника (рис. 11,б) численно равна модулю проекции скорости v х тела в момент времени t, а основание треугольника численно равно длительности промежутка времени t. Площадь треугольника S=v x t/2.

Использовав формулу 1.12, после преобразований находим, что площадь треугольника

Правая часть последнего равенства представляет собой выражение, определяющее путь, пройденный телом. Следовательно, путь, пройденный в прямолинейном равноускоренном движении без начальной скорости, численно равен площади треугольника, ограниченного графиком скорости, осью абсцисс и ординатой, соответствующей скорости тела в момент времени t.

Урок на тему : «Скорость прямолинейного равноускоренного

движения. Графики скорости».

Обучающая цель : ввести формулу для определения мгновенной скорости тела в любой момент времени, продолжить формирование умения строить графики зависимости проекции скорости от времени,рассчитывать мгновенную скорость тела в любой момент времени, совершенствовать умения учащихся решать задачи аналитическим и графическим способами.

Развивающая цель : развитие у школьников теоретического, творческого мышления, формирование операционного мышления, направленного на выбор оптимальных решений

Мотивационная цель : пробуждение интереса к изучению физики и информатики

Ход урока.

1.Организационный момент .

Учитель:- Здравствуйте,ребята.Сегодня на уроке мы изучим тему «Скорость»,повторим тему «Ускорение», на уроке мы с вами выучим формулу для определения мгновенной скорости тела в любой момент времени, продолжим формирование умения строить графики зависимости проекции скорости от времени,рассчитывать мгновенную скорость тела в любой момент времени, будем совершенствовать умения решать задачи аналитическим и графическим способами.Я рада видеть Вас на уроке здоровыми. Не удивляйтесь,что я с этого начала наш урок: здоровье каждого из вас -самое главное для меня и других учителей. Как вы думаете,что общего может быть между нашим здоровьем и темой «Скорость»?(слайд)

Учащиеся высказывают мнение по данному вопросу.

Учитель:- Знание по данной теме может помочь предугадывать возникновение ситуаций, опасных для жизни человека, например, возникающих при дорожном движении и др.

2.Актуализация знаний.

Повторение темы «Ускорение» проводится в виде ответов обучающихся на такие вопросы:

1.что такое ускорение (слайд);

2.формула и единицы измерения ускорения(слайд);

3.равнопеременное движение(слайд);

4.графики ускорения (слайд);

5. составьте задачу с использованием изученного материала.

6.Законы или определения, приведенные ниже,имеют ряд неточностей.Дайте правильные формулировки.

Перемещением тела называют отрезок ,соединяющий начальное и конечное положение тела.

Скорость равномерного прямолинейного движения- это путь , пройденный телом за единицу времени.

Механическим движением тела называется изменение его положения в пространстве.

Прямолинейным равномерным движением называют движение, при котором тело за равные промежутки времени проходит одинаковые пути.

Ускорение- это величина, численно равная отношению скорости ко времени.

Тело,у которого малые размеры,называется материальной точкой.

Основная задача механики состоит в том, чтобы знать положение тела

Кратковременная самостоятельная работа по карточкам-7 минут.

Красная карточка-оценка «5»;синяя карточка- оценка «4»;зеленая карточка- оценка «3»

1

1.какое движение называется равноускоренным?

2.Запишите формулу для определения проекции вектора ускорения.

3. Ускорение тела равно 5 м\с 2 , что это означает?

4. Скорость спуска парашютиста после раскрытия парашюта уменьшилась от 60 м\с до 5 м\с за 1,1 с. Найдите ускорение парашютиста.

1.Что называется ускорением?

3. Ускорение тела равно 3 м\с 2 . Что это означает?

4. С каким ускорением движется автомобиль, если за 10с его скорость увеличилась от 5 м\с до 10 м\с

1.Что называется ускорением?

2. Назовите единицы измерения ускорения?

3.Запишите формулу для определения проекции вектора ускорения.

4. 3. Ускорение тела равно 2 м\с 2 , что это означает?

3.Изучение нового материала .

1.Вывод формулы скорости из формулы ускорения. У доски под руководством учителя ученик пишет вывод формулы



2.Графическое представление движения.

На слайде презентации рассматривают графики скорости

.

4.Решение задач на данную тему по материалам ГИ А

Слайды презентации.

1. Используя график зависимости скорости движения тела от времени, определите скорость тела в конце 5-ой секунды, считая, что характер движения тела не изменяется.

    9 м/ с

    10 м/ с

    12 м/ с

    14 м/ с

2.По графику зависимости скорости движения тела от времени. Найдите скорость тела в момент времени t = 4 с.

3.На рисунке изображен график зависимости скорости движения материальной точки от времени. Определите скорость тела в момент времени t = 12 с , считая, что характер движения тела не изменяется.

4.На рисунке приведен график скорости некоторого тела. Определите скорость тела в момент времени t = 2 с.

5.На рисунке представлен график зависимости проекции скорости грузовика на ось х от вре ме ни. Проекция ускорения грузовика на эту ось в момент t =3 с равна

6.Тело начинает прямолинейное движение из состояния покоя, и его ускорение меняется со временем так, как показано на графике. Через 6 с после начала движения модуль скорости тела будет равен

7.Мотоциклист и велосипедист одновременно начинают равноускоренное движение. Ускорение мотоциклиста в 3 раза больше, чем у велосипедиста. В один и тот же момент времени скорость мотоциклиста больше скорости велосипедиста

1) в 1,5 раза

2) в √3 раза

3) в 3 раза

5.Итоги урока.(Рефлексия по данной теме.)

Что особенно запомнилось и поразило из учебного материала.

6.Домашнее задание .

7. Оценки за урок.

§ 14. ГРАФИКИ ПУТИ И СКОРОСТИ

Определение пути по графику скорости

В физике и математике используют три способа подачи информации о связи между различными величинами: а) в виде формулы, например, s =v ∙ t; б) в виде таблицы; в) в виде графика (рисунка).

Зависимость скорости от времени v(t) - график скорости изображается с помощью двух взаимно перпендикулярных осей. Вдоль горизонтальной оси будем откладывать время, а по вертикальной - скорость (рис. 14.1). Надо заблаговременно продумать масштаб, чтобы рисунок не был слишком большим или слишком малым. У конца оси указывают букву, которая является обозначением численно равна площади заштрихованного прямоугольника abcd величины, что на ней откладывается. Возле буквы указывают единицу измерения этой величины. Например, возле оси времени указывают t, с, а возле оси скорости v(t), мес. Выбирают масштаб и наносят деления на каждую ось.

Рис. 14.1. График скорости тела, равномерно движущегося со скоростью 3 м/сек. Путь, пройденный телом со 2-й по 6-ю секунды,

Изображение равномерного движения таблицей и графиками

Рассмотрим равномерное движение тела со скоростью 3 м/с, то есть числовое значение скорости будет постоянным в течение всего времени движения. Сокращенно это записывают так: v = const (константа, то есть постоянная величина). В нашем примере она равна трем: v = 3 . Вы уже знаете, что информацию о зависимости одной величины от другой можно подавать в виде таблицы (массива, как говорят в информатике):

Из таблицы видно, что во все указанные моменты времени скорость равна 3 м/сек. Пусть масштаб оси времени 2 кл. = 1 с, а оси скорости 2 кл. = 1 м/сек. График зависимости скорости от времени (сокращенно говорят: график скорости) приведены на рисунке 14.1.

С помощью графика скорости можно найти путь, который тело проходит за определенный интервал времени. Для этого нужно сопоставить два факта: с одной стороны, путь можно найти, умножив скорость на время, а с другой - произведение скорости на время, как видно из рисунка - это площадь прямоугольника со сторонами t и v.

Например, со второй до шестой секунды тело двигалось в течение четырех секунд и прошло 3 м/с ∙ 4 с = 12 м. Это площадь прямоугольника аbсd, длина которого равна 4 с (отрезок ad вдоль оси времени) и высота 3 м/с (отрезок аb вдоль вертикали). Площадь, правда, несколько необычная, поскольку измеряется не в м 2 , а в г. Следовательно, площадь под графиком скорости численно равна пройденному пути.

График пути

График пути s(t) можно изобразить, используя формулу s = v ∙ t, то есть в нашем случае, когда скорость составляет 3 м/с: s = 3 ∙ t. Построим таблицу:

Вдоль горизонтальной оси снова откладывают время (t, с), а вдоль вертикальной - путь. Возле оси пути пишем: s, м (рис. 14.2).

Определение скорости по графику пути

Изобразим теперь на одном рисунке два графика, которые будут соответствовать движениям со скоростями 3 м/с (прямая 2) и 6 м/с (прямая 1) (рис. 14.3). Видно, что чем больше скорость тела, тем круче линия точек графика.

Существует и обратная задача: имея график движения, нужно определить скорость и записать уравнение пути (рис. 14.3). Рассмотрим прямую 2. От начала движения и до момента времени t = 2 с тело прошло путь s = 6 м. Следовательно, его скорость: v = = 3 . Выбор другого интервала времени ничего не изменит, например, на момент t = 4 с путь, пройденный телом от начала движения, составляет s = 12 м. Отношение опять равна 3 м/сек. Но так и должно быть, поскольку тело движется с постоянной скоростью. Поэтому проще всего было бы выбрать интервал времени 1 с, ведь путь, пройденный телом за одну секунду, численно равна скорости. Путь, пройденный первым телом (график 1) за 1 с, равна 6 м, то есть скорость первого тела равна 6 м/сек. Соответствующие зависимости пути от времени в этих двух тел будут:

s 1 = 6 ∙ t и s 2 =3 ∙ t.

Рис. 14.2. График пути. Остальные точек, кроме шести, указанных в таблице, поставленные в задании, что движение упровдож всего времени был равномерным

Рис. 14.3. График пути в случае разных скоростей

Подведем итоги

В физике используют три способа подачи информации: графический, аналитический (по формулам) и таблицей (массивом). Третий способ более приспособлен для решения на компьютере.

Путь численно равен площади под графиком скорости.

Чем круче график s(t), тем больше скорость.

Творческие задания

14.1. Начертите графики скорости и пути, когда скорость тела равномерно увеличивается, или уменьшается.

Упражнение 14

1. Как определяют путь на графике скорости?

2. Можно ли записать формулу для зависимости пути от времени, имея график s(t)?

3. Или изменится угол наклона графика пути, если масштаб на осях уменьшить вдвое?

4. Почему график пути равномерного движения изображается прямой?

5. Какое из тел (рис. 14.4) имеет наибольшую скорость?

6. Назовите три способа представления информации о движении тела, а также (по вашему мнению) их преимущества и недостатки.

7. Как можно определить путь по графику скорости?

8. а) Чем отличаются графики пути для тел, движущихся с разными скоростями? б) Что в них общего?

9. По графику (рис. 14.1) найдите путь, пройденный телом от начала первой до конца третьей секунды.

10. Какой путь прошло тело (рис. 14.2) за: а) две секунды; б) четыре секунды? в) Укажите, где начинается третья секунда движения, и где она заканчивается.

11. Изобразите на графиках скорости и пути движение со скоростью а) 4 м/с; б) 2 м/сек.

12. Запишите формулу зависимости пути от времени для движений, изображенных на рис. 14.3.

13. а) Найдите скорости тел по графикам (рис. 14.4); б) запишите соответствующие уравнения пути и скорости. в) Постройте графики скорости этих тел.

14. Постройте графики пути и скорости для тел, движения которых заданы уравнениями: s 1 = 5 ∙ t и s 2 = 6 ∙ t. Чему равны скорости тел?

15. По графикам (рис. 14.5) определите: а) скорости тела; б) пути, пройденные ими за первые 5 сек. в) Запишите уравнение пути и постройте соответствующие графики для всех трех движений.

16. Начертите график пути для движения первого тела относительно второго (рис. 14.3).