Istražiti homogeni sistem za postojanje netrivijalnog rješenja. Šta je homogeni sistem linearnih jednačina


Rješenje linearnih sistema algebarske jednačine(SLAE) je nesumnjivo najvažnija tema u kursu linearne algebre. Ogroman broj problemi iz svih grana matematike svode se na rješavanje sistema linearne jednačine. Ovi faktori objašnjavaju razlog za ovaj članak. Materijal članka je odabran i strukturiran tako da uz njegovu pomoć možete

  • odabrati optimalnu metodu za rješavanje vašeg sistema linearnih algebarskih jednadžbi,
  • proučavati teoriju odabrane metode,
  • riješite svoj sistem linearnih jednačina razmatrajući detaljna rješenja tipičnih primjera i problema.

Kratak opis materijala članka.

Prvo dajemo sve potrebne definicije, koncepte i uvodimo oznake.

Zatim ćemo razmotriti metode rješavanja sistema linearnih algebarskih jednadžbi u kojima je broj jednačina jednak broju nepoznatih varijabli i koje imaju jedinstveno rješenje. Prvo, fokusiraćemo se na Cramerovu metodu, drugo, pokazaćemo matričnu metodu za rešavanje ovakvih sistema jednačina, treće, analiziraćemo Gaussovu metodu (metoda sekvencijalna eliminacija nepoznate varijable). Da bismo konsolidirali teoriju, svakako ćemo riješiti nekoliko SLAE na različite načine.

Nakon toga prelazimo na rješavanje sistema linearnih algebarskih jednadžbi opšteg oblika, u kojima se broj jednačina ne poklapa sa brojem nepoznatih varijabli ili je glavna matrica sistema singularna. Hajde da formulišemo Kronecker-Capelli teorem, koji nam omogućava da uspostavimo kompatibilnost SLAE. Analizirajmo rješenja sistema (ako su kompatibilni) koristeći koncept osnovni mol matrice. Također ćemo razmotriti Gaussovu metodu i detaljno opisati rješenja primjera.

Svakako ćemo se zadržati na strukturi opšteg rješenja homogenih i nehomogenih sistema linearnih algebarskih jednačina. Hajde da damo koncept fundamentalnog sistema rešenja i pokažimo kako se opšte rešenje SLAE piše korišćenjem vektora fundamentalnog sistema rešenja. Za bolje razumijevanje, pogledajmo nekoliko primjera.

U zaključku ćemo razmotriti sisteme jednačina koji se mogu svesti na linearne, kao i razne zadatke, pri rješavanju kojih se SLAEs pojavljuju.

Navigacija po stranici.

Definicije, koncepti, oznake.

Razmotrićemo sisteme p linearnih algebarskih jednadžbi sa n nepoznatih varijabli (p može biti jednako n) oblika

Nepoznate varijable, - koeficijenti (neki realni ili kompleksni brojevi), - slobodni termini (takođe realni ili kompleksni brojevi).

Ovaj oblik snimanja SLAE se zove koordinata.

IN matrični oblik pisanje ovog sistema jednačina ima oblik,
Gdje - glavna matrica sistema, - matrica kolona nepoznatih varijabli, - matrica kolona slobodnih termina.

Ako matrici A dodamo matricu-stupac slobodnih pojmova kao (n+1)-ti stupac, dobijamo tzv. proširena matrica sistemi linearnih jednačina. Obično se proširena matrica označava slovom T, a stupac slobodnih pojmova odvojen je okomitom linijom od preostalih stupaca, tj.

Rješavanje sistema linearnih algebarskih jednačina naziva skup vrijednosti nepoznatih varijabli koji pretvara sve jednadžbe sistema u identitete. Matrična jednadžba za date vrijednosti nepoznatih varijabli također postaje identitet.

Ako sistem jednačina ima barem jedno rješenje, onda se zove joint.

Ako sistem jednačina nema rješenja, onda se zove non-joint.

Ako SLAE ima jedinstveno rješenje, onda se ono zove siguran; ako postoji više od jednog rješenja, tada – neizvjesno.

Ako su slobodni članovi svih jednačina sistema jednaki nuli , tada se sistem poziva homogena, inače – heterogena.

Rješavanje elementarnih sistema linearnih algebarskih jednačina.

Ako je broj jednačina sistema jednak broju nepoznatih varijabli i determinanta njegove glavne matrice nije jednaka nuli, tada će se takve SLAE zvati elementarno. Takvi sistemi jednačina imaju jedinstveno rješenje, au slučaju homogenog sistema, sve nepoznate varijable su jednake nuli.

Počeli smo proučavati takve SLAE u srednja škola. Prilikom njihovog rješavanja, uzeli smo jednu jednačinu, izrazili jednu nepoznatu varijablu u terminima drugih i zamijenili je u preostale jednačine, zatim uzeli sljedeću jednačinu, izrazili sljedeću nepoznatu varijablu i zamijenili je u druge jednačine i tako dalje. Ili su koristili metodu sabiranja, odnosno dodali su dvije ili više jednadžbi kako bi eliminirali neke nepoznate varijable. Nećemo se detaljnije zadržavati na ovim metodama, jer su one u suštini modifikacije Gaussove metode.

Glavne metode za rješavanje elementarnih sistema linearnih jednačina su Cramerova metoda, matrična metoda i Gaussova metoda. Hajde da ih sredimo.

Rješavanje sistema linearnih jednadžbi Cramerovom metodom.

Pretpostavimo da treba da rešimo sistem linearnih algebarskih jednačina

u kojoj je broj jednačina jednak broju nepoznatih varijabli, a determinanta glavne matrice sistema je različita od nule, tj.

Neka je determinanta glavne matrice sistema, i - determinante matrica koje se dobijaju iz A zamenom 1., 2., …, n-ti kolonu odnosno kolonu slobodnih članova:

Uz ovu notaciju, nepoznate varijable se izračunavaju korištenjem formula Cramerove metode kao . Ovako se pronalazi rješenje sistema linearnih algebarskih jednačina korištenjem Cramerove metode.

Primjer.

Cramerova metoda .

Rješenje.

Glavna matrica sistema ima oblik . Izračunajmo njegovu determinantu (ako je potrebno, pogledajte članak):

Pošto je determinanta glavne matrice sistema različita od nule, sistem ima jedinstveno rešenje koje se može naći Cramerovom metodom.

Sastavimo i izračunajmo potrebne determinante (determinantu dobijamo tako što prvi stupac u matrici A zamijenimo stupcem slobodnih termina, determinantu zamjenom drugog stupca stupcem slobodnih pojmova i zamjenom treće kolone matrice A stupcem slobodnih pojmova) :

Pronalaženje nepoznatih varijabli pomoću formula :

odgovor:

Glavni nedostatak Cramerove metode (ako se to može nazvati nedostatkom) je složenost izračunavanja determinanti kada je broj jednačina u sistemu veći od tri.

Rješavanje sistema linearnih algebarskih jednadžbi matričnom metodom (pomoću inverzne matrice).

Neka je sistem linearnih algebarskih jednadžbi zadan u matričnom obliku, pri čemu matrica A ima dimenziju n sa n i njena determinanta je različita od nule.

Pošto je , tada je matrica A invertibilna, odnosno postoji inverzna matrica. Ako obje strane jednakosti pomnožimo lijevom, dobićemo formulu za pronalaženje matrice-stupca nepoznatih varijabli. Ovako smo matričnim metodom dobili rješenje za sistem linearnih algebarskih jednadžbi.

Primjer.

Riješiti sistem linearnih jednačina matrična metoda.

Rješenje.

Prepišimo sistem jednačina u matričnom obliku:

Jer

tada se SLAE može riješiti korištenjem matrične metode. Korišćenjem inverzna matrica rješenje za ovaj sistem se može naći kao .

Konstruirajmo inverznu matricu koristeći matricu od algebarskih sabiranja elemenata matrice A (ako je potrebno, pogledajte članak):

Ostaje izračunati matricu nepoznatih varijabli množenjem inverzne matrice na matricu-kolona slobodnih članova (ako je potrebno, pogledajte članak):

odgovor:

ili u drugoj notaciji x 1 = 4, x 2 = 0, x 3 = -1.

Glavni problem pri pronalaženju rješenja sistema linearnih algebarskih jednadžbi metodom matrice je složenost pronalaženja inverzne matrice, posebno za kvadratne matrice red veći od trećeg.

Rješavanje sistema linearnih jednadžbi Gaussovom metodom.

Pretpostavimo da treba da nađemo rešenje za sistem od n linearnih jednačina sa n nepoznatih varijabli
determinanta glavne matrice koja je različita od nule.

Suština Gaussove metode sastoji se od sekvencijalnog eliminisanja nepoznatih varijabli: prvo se x 1 isključuje iz svih jednačina sistema, počevši od druge, zatim se x 2 isključuje iz svih jednačina, počevši od treće, i tako dalje, sve dok ne ostane samo nepoznata varijabla x n u posljednja jednačina. Ovaj proces transformacije sistemskih jednačina da bi se sekvencijalno eliminisale nepoznate varijable naziva se direktna Gausova metoda. Nakon završetka naprednog poteza Gaussove metode, x n se nalazi iz posljednje jednačine, koristeći ovu vrijednost iz pretposljednje jednačine, izračunava se x n-1, i tako dalje, x 1 se nalazi iz prve jednačine. Proces izračunavanja nepoznatih varijabli pri prelasku sa zadnje jednadžbe sistema na prvu naziva se inverzno od Gausove metode.

Hajde da ukratko opišemo algoritam za eliminaciju nepoznatih varijabli.

Pretpostavit ćemo da , budući da to uvijek možemo postići preuređivanjem jednačina sistema. Hajde da eliminišemo nepoznatu promenljivu x 1 iz svih jednačina sistema, počevši od druge. Da bismo to učinili, drugoj jednačini sistema dodajemo prvu, pomnoženu sa , trećoj jednačini dodajemo prvu, pomnoženu sa , i tako dalje, na n-tu jednačinu dodajemo prvu, pomnoženu sa . Sistem jednačina nakon takvih transformacija će poprimiti oblik

gdje i .

Do istog rezultata bismo došli da smo izrazili x 1 u terminima drugih nepoznatih varijabli u prvoj jednačini sistema i zamenili rezultujući izraz u sve ostale jednačine. Dakle, varijabla x 1 je isključena iz svih jednačina, počevši od druge.

Zatim nastavljamo na sličan način, ali samo s dijelom rezultirajućeg sistema koji je označen na slici

Da bismo to učinili, trećoj jednačini sistema dodajemo drugu, pomnoženu sa , četvrtoj jednačini dodamo drugu, pomnoženu sa , i tako dalje, na n-tu jednačinu dodamo drugu, pomnoženu sa . Sistem jednačina nakon takvih transformacija će poprimiti oblik

gdje i . Dakle, varijabla x 2 je isključena iz svih jednačina, počevši od treće.

Zatim prelazimo na eliminaciju nepoznatog x 3 i slično postupamo sa dijelom sistema označenim na slici

Tako nastavljamo direktnu progresiju Gausove metode sve dok sistem ne poprimi oblik

Od ovog trenutka počinjemo obrnuto od Gaussove metode: izračunavamo x n iz posljednje jednačine kao , koristeći dobivenu vrijednost x n nalazimo x n-1 iz pretposljednje jednačine, i tako dalje, nalazimo x 1 iz prve jednačine .

Primjer.

Riješiti sistem linearnih jednačina Gaussova metoda.

Rješenje.

Isključimo nepoznatu varijablu x 1 iz druge i treće jednačine sistema. Da bismo to učinili, na obje strane druge i treće jednačine dodajemo odgovarajuće dijelove prve jednačine, pomnožene sa i sa:

Sada eliminiramo x 2 iz treće jednadžbe dodavanjem lijevoj i desnoj strani druge jednadžbe lijevu i desnu stranu druge jednačine, pomnožene sa:

Ovim se završava hod prema naprijed Gaussove metode;

Iz posljednje jednadžbe rezultujućeg sistema jednačina nalazimo x 3:

Iz druge jednačine dobijamo .

Iz prve jednadžbe nalazimo preostalu nepoznatu varijablu i time dovršavamo obrnuto Gaussovom metodom.

odgovor:

X 1 = 4, x 2 = 0, x 3 = -1.

Rješavanje sistema linearnih algebarskih jednačina opšteg oblika.

Općenito, broj jednačina sistema p ne poklapa se sa brojem nepoznatih varijabli n:

Takvi SLAE možda nemaju rješenja, imaju jedno rješenje ili imaju beskonačno mnogo rješenja. Ova izjava se takođe odnosi na sisteme jednačina čija je glavna matrica kvadratna i singularna.

Kronecker–Capelli teorem.

Prije pronalaženja rješenja za sistem linearnih jednačina, potrebno je utvrditi njegovu kompatibilnost. Odgovor na pitanje kada je SLAE kompatibilan, a kada nekonzistentan daje od Kronecker–Capelli teorem:
Da bi sistem p jednačina sa n nepoznatih (p može biti jednako n) bio konzistentan, potrebno je i dovoljno da rang glavne matrice sistema bude jednak rangu proširene matrice, tj. , Rang(A)=Rank(T).

Razmotrimo, kao primjer, primjenu Kronecker–Capellijeve teoreme za određivanje kompatibilnosti sistema linearnih jednačina.

Primjer.

Saznajte da li sistem linearnih jednačina ima rješenja.

Rješenje.

. Koristimo metodu graničenja maloljetnika. Minor drugog reda različito od nule. Pogledajmo maloljetnike trećeg reda koji ga graniče:

Pošto su svi granični minori trećeg reda jednaki nuli, rang glavne matrice je jednak dva.

Zauzvrat, rang proširene matrice je jednako tri, pošto je umanjilac trećeg reda

različito od nule.

dakle, Rang(A), dakle, koristeći Kronecker–Capelli teorem, možemo zaključiti da je originalni sistem linearnih jednačina nekonzistentan.

odgovor:

Sistem nema rješenja.

Dakle, naučili smo utvrditi nekonzistentnost sistema koristeći Kronecker-Capelli teorem.

Ali kako pronaći rješenje za SLAE ako je uspostavljena njegova kompatibilnost?

Da bismo to učinili, potreban nam je koncept baznog mola matrice i teorema o rangu matrice.

Minor najviši red matrica A, različita od nule, naziva se osnovni.

Iz definicije baznog minora slijedi da je njegov red jednak rangu matrice. Za nenultu matricu A može postojati nekoliko baznih minora;

Na primjer, razmotrite matricu .

Svi minori trećeg reda ove matrice jednaki su nuli, jer su elementi trećeg reda ove matrice zbir odgovarajućih elemenata prvog i drugog reda.

Sljedeći minori drugog reda su osnovni, jer su različiti od nule

Maloljetnici nisu osnovne, jer su jednake nuli.

Teorema o rangu matrice.

Ako je rang matrice reda p po n jednak r, tada se svi elementi reda (i stupca) matrice koji ne čine odabrani bazni minor linearno izražavaju u terminima odgovarajućih elemenata reda (i stupca) koji formiraju osnovni minor.

Šta nam govori teorema o rangu matrice?

Ako smo, prema Kronecker–Capellijevoj teoremi, uspostavili kompatibilnost sistema, tada biramo bilo koji bazni minor glavne matrice sistema (njen red je jednak r) i isključujemo iz sistema sve jednačine koje čine ne čine odabrani bazni mol. Ovako dobijena SLAE bit će ekvivalentna originalnoj, budući da su odbačene jednadžbe i dalje suvišne (prema teoremi o rangu matrice, one su linearna kombinacija preostalih jednačina).

Kao rezultat, nakon odbacivanja nepotrebnih jednačina sistema moguća su dva slučaja.

    Ako je broj jednačina r u rezultirajućem sistemu jednak broju nepoznatih varijabli, onda će ona biti definitivna i jedino rješenje se može naći Cramerovom metodom, matričnom metodom ili Gaussovom metodom.

    Primjer.

    .

    Rješenje.

    Rang glavne matrice sistema je jednako dva, pošto je minor drugog reda različito od nule. Prošireni matrični rang je takođe jednako dva, pošto je jedini minor trećeg reda nula

    a gore razmatrani minor drugog reda je različit od nule. Na osnovu Kronecker–Capelli teoreme, možemo tvrditi kompatibilnost originalnog sistema linearnih jednačina, budući da je Rank(A)=Rank(T)=2.

    Kao base minor uzimamo . Formira se koeficijentima prve i druge jednačine:

    Treća jednačina sistema ne učestvuje u formiranju baznog minora, pa je isključujemo iz sistema na osnovu teoreme o rangu matrice:

    Tako smo dobili elementarni sistem linearnih algebarskih jednačina. Hajde da to riješimo Cramerovom metodom:

    odgovor:

    x 1 = 1, x 2 = 2.

    Ako je broj jednačina r u rezultirajućem SLAE manji broj nepoznate varijable n, zatim na lijevoj strani jednadžbi ostavljamo članove koji čine bazni minor, a preostale članove prenosimo na desnu stranu jednačina sistema suprotnog predznaka.

    Nepoznate varijable (od njih r) koje ostaju na lijevoj strani jednadžbe se pozivaju main.

    Nepoznate varijable (ima n - r komada) koje se nalaze na desnoj strani se pozivaju besplatno.

    Sada vjerujemo da slobodne nepoznate varijable mogu imati proizvoljne vrijednosti, dok će r glavnih nepoznatih varijabli biti izražene kroz slobodne nepoznate varijable na jedinstven način. Njihov izraz se može naći rješavanjem rezultirajuće SLAE korištenjem Cramerove metode, matrične metode ili Gaussove metode.

    Pogledajmo to na primjeru.

    Primjer.

    Riješiti sistem linearnih algebarskih jednačina .

    Rješenje.

    Nađimo rang glavne matrice sistema metodom graničenja maloletnika. Uzmimo 1 1 = 1 kao nenulti minor prvog reda. Počnimo tražiti minor koji nije nula drugog reda koji graniči s ovim minorom:

    Ovako smo pronašli nenulti minor drugog reda. Počnimo tražiti granični minor koji nije nula trećeg reda:

    Dakle, rang glavne matrice je tri. Rang proširene matrice je takođe jednak tri, odnosno sistem je konzistentan.

    Za osnovni jedan uzimamo pronađeni minor trećeg reda različit od nule.

    Radi jasnoće, prikazujemo elemente koji čine osnovni minor:

    Ostavljamo članove uključene u bazni minor na lijevoj strani sistemskih jednačina, a ostatak prenosimo sa suprotnim predznacima na desnu stranu:

    Dajmo slobodnim nepoznatim varijablama x 2 i x 5 proizvoljne vrijednosti, odnosno prihvatamo , gdje su proizvoljni brojevi. U ovom slučaju, SLAE će poprimiti oblik

    Rešimo rezultirajući elementarni sistem linearnih algebarskih jednadžbi koristeći Cramerovu metodu:

    Dakle, .

    U svom odgovoru ne zaboravite navesti slobodne nepoznate varijable.

    odgovor:

    Gdje su proizvoljni brojevi.

Hajde da sumiramo.

Da bismo riješili sistem općih linearnih algebarskih jednadžbi, prvo utvrđujemo njegovu kompatibilnost koristeći Kronecker–Capelli teorem. Ako rang glavne matrice nije jednak rangu proširene matrice, onda zaključujemo da je sistem nekompatibilan.

Ako je rang glavne matrice jednak rangu proširene matrice, tada biramo bazni minor i odbacujemo jednadžbe sistema koje ne učestvuju u formiranju odabranog baznog minora.

Ako je red baznog minora jednak broju nepoznatih varijabli, tada SLAE ima jedinstveno rješenje, koje se može naći bilo kojom metodom koja nam je poznata.

Ako je red baznog minora manji od broja nepoznatih varijabli, tada na lijevoj strani sistemskih jednačina ostavljamo članove s glavnim nepoznatim varijablama, preostale članove prenosimo na desne strane i dajemo proizvoljne vrijednosti slobodne nepoznate varijable. Iz rezultirajućeg sistema linearnih jednačina nalazimo glavne nepoznate varijable koristeći Cramerovu metodu, matričnu metodu ili Gaussovu metodu.

Gaussova metoda za rješavanje sistema linearnih algebarskih jednačina opšteg oblika.

Gaussova metoda se može koristiti za rješavanje sistema linearnih algebarskih jednačina bilo koje vrste bez prethodnog testiranja njihove konzistentnosti. Proces sekvencijalne eliminacije nepoznatih varijabli omogućava da se izvede zaključak i o kompatibilnosti i o nekompatibilnosti SLAE, a ako rješenje postoji, omogućava ga pronalaženje.

Sa računske tačke gledišta, Gausova metoda je poželjnija.

Pazi detaljan opis i analizirao primjere u članku Gaussova metoda za rješavanje sistema linearnih algebarskih jednačina opšteg oblika.

Pisanje opšteg rešenja za homogene i nehomogene linearne algebarske sisteme korišćenjem vektora osnovnog sistema rešenja.

U ovom dijelu ćemo govoriti o istovremenim homogenim i nehomogenim sistemima linearnih algebarskih jednačina koje imaju beskonačan broj rješenja.

Hajde da se prvo pozabavimo homogenim sistemima.

Osnovni sistem rješenja homogeni sistem p linearnih algebarskih jednačina sa n nepoznatih varijabli je skup (n – r) linearno nezavisnih rješenja ovog sistema, gdje je r red baznog minora glavne matrice sistema.

Ako linearno nezavisna rješenja homogene SLAE označimo kao X (1) , X (2) , ..., X (n-r) (X (1) , X (2) , ..., X (n-r) su stupasti matrice dimenzije n sa 1) , onda je opšte rešenje ovog homogenog sistema predstavljeno kao linearna kombinacija vektora osnovnog sistema rešenja sa proizvoljnim konstantni koeficijenti C 1, C 2, ..., C (n-r), odnosno, .

Šta znači pojam opšte rješenje homogenog sistema linearnih algebarskih jednačina (oroslau)?

Značenje je jednostavno: formula postavlja sve moguća rješenja originalni SLAE, drugim riječima, uzimajući bilo koji skup vrijednosti proizvoljnih konstanti C 1, C 2, ..., C (n-r), koristeći formulu dobićemo jedno od rješenja za originalni homogeni SLAE.

Dakle, ako pronađemo fundamentalni sistem rješenja, onda možemo definirati sva rješenja ove homogene SLAE kao .

Pokažimo proces konstruisanja fundamentalnog sistema rješenja za homogenu SLAE.

Odabiremo bazni minor originalnog sistema linearnih jednadžbi, isključujemo sve ostale jednačine iz sistema i prenosimo sve članove koji sadrže slobodne nepoznate varijable na desnu stranu jednačina sistema suprotnih predznaka. Dajmo slobodnim nepoznatim varijablama vrijednosti 1,0,0,...,0 i izračunajmo glavne nepoznanice rješavanjem rezultirajućeg elementarnog sistema linearnih jednadžbi na bilo koji način, na primjer, korištenjem Cramerove metode. Ovo će rezultirati X (1) - prvim rješenjem fundamentalnog sistema. Ako slobodnim nepoznanicama damo vrijednosti 0,1,0,0,…,0 i izračunamo glavne nepoznanice, dobićemo X (2) . I tako dalje. Ako slobodnim nepoznatim varijablama dodijelimo vrijednosti 0,0,…,0,1 i izračunamo glavne nepoznate, dobićemo X (n-r) . Ovako će se graditi fundamentalni sistem rješenja homogene SLAE i njeno opće rješenje mogu se zapisati u obliku .

Za nehomogene sisteme linearnih algebarskih jednadžbi, opšte rešenje je predstavljeno u obliku , gde je opšte rešenje odgovarajućeg homogenog sistema, a partikularno rešenje originalnog nehomogenog SLAE, koje dobijamo davanjem slobodnim nepoznanicama vrednosti ​​0,0,…,0 i izračunavanje vrijednosti glavnih nepoznanica.

Pogledajmo primjere.

Primjer.

Pronađite osnovni sistem rješenja i opšte rješenje homogenog sistema linearnih algebarskih jednadžbi .

Rješenje.

Rang glavne matrice homogenih sistema linearnih jednačina je uvek jednak rangu proširene matrice. Pronađimo rang glavne matrice metodom graničnih minora. Kao nenulti minor prvog reda, uzimamo element a 1 1 = 9 glavne matrice sistema. Nađimo granični minor koji nije nula drugog reda:

Pronađen je minor drugog reda, različit od nule. Prođimo kroz minore trećeg reda koji se graniče s njim u potrazi za nenultom jedinicom:

Svi granični minori trećeg reda jednaki su nuli, stoga je rang glavne i proširene matrice jednak dva. Hajde da uzmemo. Radi jasnoće, zabilježimo elemente sistema koji ga čine:

Treća jednačina originalne SLAE ne učestvuje u formiranju baznog minora, stoga se može isključiti:

Ostavljamo članove koji sadrže glavne nepoznanice na desnim stranama jednadžbe, a članove sa slobodnim nepoznanicama prenosimo na desne strane:

Konstruirajmo fundamentalni sistem rješenja originalnog homogenog sistema linearnih jednačina. Osnovni sistem rješenja ove SLAE sastoji se od dva rješenja, pošto originalna SLAE sadrži četiri nepoznate varijable, a red njenog baznog minora je jednak dva. Da bismo pronašli X (1), dajemo slobodnim nepoznatim varijablama vrijednosti x 2 = 1, x 4 = 0, zatim pronađemo glavne nepoznate iz sistema jednačina
.

Možete naručiti detaljno rješenje tvoj zadatak!!!

Da razumem šta je to fundamentalni sistem odlučivanja možete pogledati video tutorijal za isti primjer klikom. Sada pređimo na stvarni opis svih potrebnih radova. Ovo će vam pomoći da detaljnije shvatite suštinu ovog pitanja.

Kako pronaći osnovni sistem rješenja linearne jednačine?

Uzmimo za primjer sljedeći sistem linearnih jednadžbi:

Hajde da nađemo rešenje za ovo linearni sistem jednačine Za početak, mi potrebno je da napišete matricu koeficijenata sistema.

Transformirajmo ovu matricu u trouglastu. Prepisujemo prvi red bez promjena. I svi elementi koji su ispod $a_(11)$ moraju biti nula. Da biste napravili nulu umjesto elementa $a_(21)$, trebate oduzeti prvi od drugog reda, a razliku upisati u drugi red. Da biste napravili nulu umjesto elementa $a_(31)$, trebate oduzeti prvo od trećeg reda i upisati razliku u treći red. Da biste napravili nulu umjesto elementa $a_(41)$, trebate oduzeti prvo pomnoženo sa 2 iz četvrtog reda i upisati razliku u četvrtom redu. Da biste napravili nulu umjesto elementa $a_(31)$, trebate oduzeti prvo pomnoženo sa 2 iz petog reda i upisati razliku u peti red.

Prepisujemo prvi i drugi red bez promjena. I svi elementi koji su ispod $a_(22)$ moraju biti nula. Da biste napravili nulu umjesto elementa $a_(32)$, trebate oduzeti drugu pomnoženu sa 2 iz trećeg reda i upisati razliku u treći red. Da biste napravili nulu umjesto elementa $a_(42)$, potrebno je da oduzmete drugu pomnoženu sa 2 iz četvrtog reda i upišete razliku u četvrti red. Da biste napravili nulu umjesto elementa $a_(52)$, potrebno je da oduzmete drugu pomnoženu sa 3 iz petog reda i upišete razliku u peti red.

Vidimo to zadnja tri reda su ista, pa ako oduzmete treći od četvrtog i petog, oni će postati nula.

Prema ovoj matrici napisati novi sistem jednačina.

Vidimo da imamo samo tri linearno nezavisne jednačine i pet nepoznanica, pa će se osnovni sistem rješenja sastojati od dva vektora. Dakle, mi treba da pomerimo poslednje dve nepoznate udesno.

Sada počinjemo izražavati one nepoznanice koje su na lijevoj strani kroz one koje su na desnoj strani. Počinjemo od posljednje jednačine, prvo izražavamo $x_3$, zatim zamjenjujemo rezultirajući rezultat u drugu jednačinu i izražavamo $x_2$, a zatim u prvu jednačinu i ovdje izražavamo $x_1$. Tako smo sve nepoznanice koje su na lijevoj strani izrazili kroz nepoznanice koje su na desnoj strani.

Zatim, umjesto $x_4$ i $x_5$, možemo zamijeniti bilo koje brojeve i pronaći $x_1$, $x_2$ i $x_3$. Svakih pet od ovih brojeva bit će korijeni našeg originalnog sistema jednačina. Da biste pronašli vektore koji su uključeni u FSR trebamo zamijeniti 1 umjesto $x_4$, i zamijeniti 0 umjesto $x_5$, pronaći $x_1$, $x_2$ i $x_3$, i onda obrnuto $x_4=0$ i $x_5=1$.

Homogeni sistemi linearnih algebarskih jednačina

U sklopu nastave Gaussova metoda I Nekompatibilni sistemi/sistemi sa zajedničkim rješenjem smatrali smo nehomogeni sistemi linearnih jednačina, Gdje besplatni član(koji je obično na desnoj strani) barem jedan iz jednadžbi bio različit od nule.
A sada, nakon dobrog zagrevanja sa matrični rang, nastavićemo sa poliranjem tehnike elementarne transformacije on homogeni sistem linearnih jednačina.
Na osnovu prvih pasusa, materijal može izgledati dosadno i osrednje, ali ovaj utisak je varljiv. Pored daljeg razvoja tehnika, bit će puno novih informacija, pa vas molimo da ne zanemarite primjere u ovom članku.

Šta je homogeni sistem linearnih jednačina?

Odgovor se nameće sam od sebe. Sistem linearnih jednačina je homogen ako je slobodni član svima jednačina sistema je nula. na primjer:

To je apsolutno jasno homogen sistem je uvek konzistentan, odnosno uvijek ima rješenje. I, prije svega, ono što vam upada u oči je tzv trivijalan rješenje . Trivijalno, za one koji uopće ne razumiju značenje pridjeva, znači bez razmetanja. Ne akademski, naravno, ali razumljivo =) ...Zašto se tucati, hajde da saznamo ima li ovaj sistem još neko rješenje:

Primjer 1

Rješenje: za rješavanje homogenog sistema potrebno je napisati sistemska matrica i uz pomoć elementarnih transformacija dovesti ga u stepenasti oblik. Imajte na umu da ovdje nema potrebe zapisivati ​​vertikalnu traku i nulti stupac slobodnih pojmova - na kraju krajeva, bez obzira na to što radite s nulama, one će ostati nule:

(1) Prvi red je dodat drugom redu, pomnožen sa –2. Prvi red je dodat trećem redu, pomnožen sa –3.

(2) Drugi red je dodat trećem redu, pomnožen sa –1.

Deljenje trećeg reda sa 3 nema mnogo smisla.

Kao rezultat elementarnih transformacija, dobija se ekvivalentan homogeni sistem , i, koristeći inverznu Gaussovu metodu, lako je provjeriti da je rješenje jedinstveno.

Odgovori:

Hajde da formulišemo očigledan kriterijum: homogeni sistem linearnih jednačina ima samo trivijalno rešenje, Ako rang sistemske matrice(u ovom slučaju 3) jednako je broju varijabli (u ovom slučaju – 3 komada).

Zagrijmo se i podesimo naš radio na val elementarnih transformacija:

Primjer 2

Riješiti homogeni sistem linearnih jednačina

Iz članka Kako pronaći rang matrice? Prisjetimo se racionalne tehnike istovremenog smanjivanja brojeva matrice. U suprotnom ćete morati rezati veliku ribu koja često grize. Približan primjer zadatka na kraju lekcije.

Nule su dobre i zgodne, ali u praksi je slučaj mnogo češći kada se redovi sistemske matrice linearno zavisna. I tada je pojava generalnog rješenja neizbježna:

Primjer 3

Riješiti homogeni sistem linearnih jednačina

Rješenje: zapišemo matricu sistema i, koristeći elementarne transformacije, dovedemo je u postepeni oblik. Prva radnja je usmjerena ne samo na dobivanje jedne vrijednosti, već i na smanjenje brojeva u prvom stupcu:

(1) Treći red je dodan prvom redu, pomnožen sa –1. Treći red je dodat drugom redu, pomnožen sa –2. U gornjem lijevom kutu dobio sam jedinicu sa “minusom”, koja je često mnogo pogodnija za daljnje transformacije.

(2) Prva dva reda su ista, jedan od njih je obrisan. Iskreno, nisam forsirao rješenje - ispalo je tako. Ako transformacije izvodite na šablonski način, onda linearna zavisnost linije bi se otkrile nešto kasnije.

(3) Drugi red je dodat trećem redu, pomnožen sa 3.

(4) Promijenjen je predznak prvog reda.

Kao rezultat elementarnih transformacija, dobijen je ekvivalentan sistem:

Algoritam radi potpuno isto kao i za heterogeni sistemi. Varijable “sjedi na stepenicama” su glavne, varijabla koja nije dobila “korak” je besplatna.

Izrazimo osnovne varijable kroz slobodnu varijablu:

Odgovori: generalno rješenje:

Trivijalno rješenje je uključeno u opšta formula, i nepotrebno ga je posebno zapisivati.

Provjera se također vrši prema uobičajenoj shemi: rezultirajuće opšte rješenje mora se zamijeniti u lijevu stranu svake jednačine sistema i mora se dobiti zakonska nula za sve zamjene.

To bi bilo moguće završiti tiho i mirno, ali rješenje za homogeni sistem jednačina često treba biti predstavljeno u vektorskom obliku korišćenjem fundamentalni sistem rješenja. Molim vas, zaboravite na to za sada analitička geometrija, pošto ćemo sada govoriti o vektorima u opštem algebarskom smislu, što sam malo otvorio u članku o matrični rang. Nema potrebe prekrivati ​​terminologiju, sve je prilično jednostavno.

Nastavit ćemo sa poliranjem naše tehnologije elementarne transformacije on homogeni sistem linearnih jednačina.
Na osnovu prvih pasusa, materijal može izgledati dosadno i osrednje, ali ovaj utisak je varljiv. Pored daljeg razvoja tehnika, bit će puno novih informacija, pa vas molimo da ne zanemarite primjere u ovom članku.

Šta je homogeni sistem linearnih jednačina?

Odgovor se nameće sam od sebe. Sistem linearnih jednačina je homogen ako je slobodni član svima jednačina sistema je nula. na primjer:

To je apsolutno jasno homogen sistem je uvek konzistentan, odnosno uvijek ima rješenje. I, prije svega, ono što vam upada u oči je tzv trivijalan rješenje . Trivijalno, za one koji uopće ne razumiju značenje pridjeva, znači bez razmetanja. Ne akademski, naravno, ali razumljivo =) ...Zašto se tucati, hajde da saznamo ima li ovaj sistem još neko rješenje:

Primjer 1


Rješenje: za rješavanje homogenog sistema potrebno je napisati sistemska matrica i uz pomoć elementarnih transformacija dovesti ga u stepenasti oblik. Imajte na umu da ovdje nema potrebe zapisivati ​​vertikalnu traku i nulti stupac slobodnih pojmova - na kraju krajeva, bez obzira na to što radite s nulama, one će ostati nule:

(1) Prvi red je dodat drugom redu, pomnožen sa –2. Prvi red je dodat trećem redu, pomnožen sa –3.

(2) Drugi red je dodat trećem redu, pomnožen sa –1.

Deljenje trećeg reda sa 3 nema mnogo smisla.

Kao rezultat elementarnih transformacija, dobija se ekvivalentan homogeni sistem , i, koristeći inverznu Gaussovu metodu, lako je provjeriti da je rješenje jedinstveno.

Odgovori:

Hajde da formulišemo očigledan kriterijum: homogeni sistem linearnih jednačina ima samo trivijalno rešenje, Ako rang sistemske matrice(u ovom slučaju 3) jednako je broju varijabli (u ovom slučaju – 3 komada).

Zagrijmo se i podesimo naš radio na val elementarnih transformacija:

Primjer 2

Riješiti homogeni sistem linearnih jednačina

Da konačno konsolidujemo algoritam, analizirajmo završni zadatak:

Primjer 7

Riješite homogeni sistem, napišite odgovor u vektorskom obliku.

Rješenje: zapišemo matricu sistema i, koristeći elementarne transformacije, dovedemo je u postepeni oblik:

(1) Predznak prvog reda je promijenjen. Još jednom skrećem pažnju na tehniku ​​koja se već mnogo puta susreće, a koja vam omogućava da značajno pojednostavite sljedeću radnju.

(1) Prvi red je dodat 2. i 3. redu. Prvi red, pomnožen sa 2, dodan je četvrtom redu.

(3) Zadnja tri reda su proporcionalna, dva su uklonjena.

Kao rezultat, dobija se standardna matrica koraka, a rješenje se nastavlja duž nazubljene staze:

– osnovne varijable;
– slobodne varijable.

Izrazimo osnovne varijable u terminima slobodnih varijabli. Iz 2. jednačine:

– zamijeniti u 1. jednačinu:

Dakle, generalno rješenje je:

Kako u primjeru koji se razmatra postoje tri slobodne varijable, osnovni sistem sadrži tri vektora.

Zamijenimo trostruku vrijednost u opšte rešenje i dobijemo vektor čije koordinate zadovoljavaju svaku jednačinu homogenog sistema. I opet, ponavljam da je vrlo preporučljivo provjeriti svaki primljeni vektor - neće trebati puno vremena, ali će vas potpuno zaštititi od grešaka.

Za trostruku vrijednost pronađite vektor

I na kraju za troje dobijamo treći vektor:

Odgovori: , Gdje

Oni koji žele izbjeći razlomke mogu uzeti u obzir trojke i dobiti odgovor u ekvivalentnom obliku:

Govoreći o razlomcima. Pogledajmo matricu dobijenu u zadatku i zapitajmo se: da li je moguće pojednostaviti dalje rješenje? Uostalom, ovdje smo prvo izrazili osnovnu varijablu kroz razlomke, zatim kroz razlomke osnovnu varijablu i, moram reći, ovaj proces nije bio najjednostavniji i ne najugodniji.

Drugo rješenje:

Ideja je pokušati izaberite druge bazne varijable. Pogledajmo matricu i uočimo dva u trećoj koloni. Pa zašto ne imati nulu na vrhu? Izvršimo još jednu elementarnu transformaciju:

Linearna jednačina se zove homogena, ako je njegov slobodni član jednak nuli, a inače nehomogen. Sistem koji se sastoji od homogene jednačine, naziva se homogenim i ima opšti pogled:

Očigledno je da je svaki homogeni sistem konzistentan i da ima nulto (trivijalno) rješenje. Stoga, kada se primjenjuje na homogene sisteme linearnih jednadžbi, često se mora tražiti odgovor na pitanje postojanja rješenja različitih od nule. Odgovor na ovo pitanje može se formulisati kao sljedeća teorema.

Teorema . Homogeni sistem linearnih jednadžbi ima rješenje različito od nule ako i samo ako je njegov rang manji od broja nepoznatih .

Dokaz: Pretpostavimo da sistem čiji je rang jednak ima rješenje različito od nule. Očigledno ne prelazi . U slučaju da sistem ima jedinstveno rešenje. Pošto sistem homogenih linearnih jednadžbi uvek ima nulto rešenje, onda će nulto rešenje biti ovo jedinstveno rešenje. Dakle, rješenja različita od nule moguća su samo za .

Zaključak 1 : Homogeni sistem jednačina, u kojem je broj jednačina manji od broja nepoznatih, uvijek ima rješenje različito od nule.

Dokaz: Ako sistem jednačina ima , tada rang sistema ne prelazi broj jednačina, tj. . Dakle, uslov je zadovoljen i, prema tome, sistem ima rešenje različito od nule.

Zaključak 2 : Homogeni sistem jednačina sa nepoznatim ima rešenje različito od nule ako i samo ako je njegova determinanta nula.

Dokaz: Pretpostavimo da sistem linearnih homogenih jednačina, čija matrica sa determinantom , ima rješenje različito od nule. Zatim, prema dokazanoj teoremi, a to znači da je matrica singularna, tj. .

Kronecker-Capelli teorema: SLU je konzistentan ako i samo ako je rang sistemske matrice jednak rangu proširene matrice ovog sistema. Sistem ur se naziva dosljednim ako ima barem jedno rješenje.

Homogeni sistem linearnih algebarskih jednačina.

Sistem od m linearnih jednačina sa n varijabli naziva se sistem linearnih homogenih jednačina ako su svi slobodni članovi jednaki 0. Sistem linearnih homogenih jednačina je uvijek konzistentan, jer uvijek ima barem nulto rješenje. Sistem linearnih homogenih jednačina ima rješenje različito od nule ako i samo ako je rang njegove matrice koeficijenata za varijable manji od broja varijabli, tj. za rang A (n. Bilo koja linearna kombinacija

Lin sistemska rješenja. homogena. ur-ii je također rješenje za ovaj sistem.

Sistem linearnih nezavisnih rješenja e1, e2,...,ek naziva se fundamentalnim ako je svako rješenje sistema linearna kombinacija rješenja. Teorema: ako je rang r matrice koeficijenata za varijable sistema linearnih homogenih jednačina manji od broja varijabli n, tada se svaki fundamentalni sistem rješenja sistema sastoji od n-r rješenja. Dakle, opšte rešenje linearnog sistema. jednodnevni ur-th ima oblik: c1e1+c2e2+...+skek, gdje je e1, e2,..., ek bilo koji fundamentalni sistem rješenja, c1, c2,...,ck su proizvoljni brojevi i k=n-r. Opšte rješenje sistema od m linearnih jednačina sa n varijabli jednako je zbiru

opšteg rešenja sistema koji mu odgovara je homogena. linearne jednačine i proizvoljno partikularno rješenje ovog sistema.

7. Linearni prostori. Podprostori. Osnova, dimenzija. Linearna školjka. Linearni prostor se zove n-dimenzionalan, ako u njemu postoji sistem linearno nezavisnih vektora, a svaki sistem većeg broja vektora je linearno zavisan. Broj je pozvan dimenzija (broj dimenzija) linearni prostor i označen je sa . Drugim riječima, dimenzija prostora je maksimalni broj linearno nezavisnih vektora ovog prostora. Ako takav broj postoji, onda se prostor naziva konačno-dimenzionalnim. Ako za bilo koga prirodni broj n u prostoru postoji sistem koji se sastoji od linearno nezavisnih vektora, onda se takav prostor naziva beskonačno-dimenzionalnim (pisano: ). U nastavku, osim ako nije drugačije navedeno, razmatrat će se prostori konačnih dimenzija.

Osnova n-dimenzionalnog linearnog prostora je uređena kolekcija linearno nezavisnih vektora ( baznih vektora).

Teorema 8.1 o proširenju vektora u smislu baze. Ako je osnova n-dimenzionalnog linearnog prostora, tada se bilo koji vektor može predstaviti kao linearna kombinacija baznih vektora:

V=v1*e1+v2*e2+…+vn+en
i, štaviše, na jedini način, tj. koeficijenti se određuju jedinstveno. Drugim riječima, bilo koji vektor prostora može se proširiti u osnovu i, štaviše, na jedinstven način.

Zaista, dimenzija prostora je . Sistem vektora je linearno nezavisan (ovo je osnova). Nakon dodavanja bilo kojeg vektora bazi, dobijamo linearno zavisan sistem (pošto se ovaj sistem sastoji od vektora n-dimenzionalnog prostora). Koristeći svojstvo 7 linearno zavisnih i linearno nezavisnih vektora, dobijamo zaključak teoreme.