Kuidas arvutada keeruliste funktsioonide tuletisi. Liitfunktsiooni tuletis

See tund on pühendatud teemale „Keeruliste funktsioonide eristamine. Ülesanne matemaatika ühtseks riigieksamiks valmistumise praktikast. Selles õppetükis uurime keeruliste funktsioonide eristamist. Koostatakse kompleksfunktsiooni tuletistest tabel. Lisaks käsitletakse probleemi lahendamise näidet matemaatika USE ettevalmistamise praktikast.

Teema: Tuletis

Õppetund: keeruka funktsiooni eristamine. Ülesanne matemaatika eksamiks valmistumise praktikast

keerulinefunktsiooni me oleme juba eristanud, kuid argument oli lineaarne funktsioon, nimelt me ​​teame, kuidas eristada funktsiooni . Näiteks, . Nüüd leiame samamoodi tuletised kompleksfunktsioonist, kus lineaarfunktsiooni asemel võib olla teine ​​funktsioon.

Alustame funktsiooniga

Niisiis, leidsime kompleksfunktsiooni siinuse tuletise, kus siinuse argumendiks oli ruutfunktsioon.

Kui on vaja leida tuletise väärtus konkreetses punktis, siis tuleb see punkt asendada leitud tuletisega.

Niisiis nägime kahes näites, kuidas reegel töötab eristamist keeruline funktsioonid.

2.

3. . Tuletage seda meelde.

7.

8. .

Seega valmib selles etapis keeruliste funktsioonide diferentseerimise tabel. Edasi, muidugi, üldistatakse seda veelgi ja nüüd liigume edasi tuletise konkreetsete probleemide juurde.

Eksamiks valmistumise praktikas pakutakse välja järgmised ülesanded.

Leia funktsiooni miinimum .

ODZ: .

Leiame tuletise. Tuletage meelde, .

Võrdlustame tuletise nulliga. Punkt - sisaldub ODZ-is.

Leiame tuletise konstantse märgi intervallid (funktsiooni monotoonsuse intervallid) (vt joonis 1).

Riis. 1. Funktsiooni monotoonsuse intervallid .

Mõelge punktile ja uurige, kas see on äärmuspunkt. Ekstreemumi piisav märk on see, et tuletis muudab punkti läbimisel märki. Sel juhul muudab tuletis märki, mis tähendab, et tegemist on äärmuspunktiga. Kuna tuletis muudab märgi "-" asemel "+", siis - miinimumpunkt. Leidke funktsiooni väärtus miinimumpunktis: . Joonistame skeemi (vt joonis 2).

Joonis 2. Funktsiooni äärmus .

Intervallil - funktsioon väheneb, sisse - funktsioon suureneb, ekstreemumipunkt on kordumatu. Funktsioon võtab väikseima väärtuse ainult punktis .

Tunnis käsitlesime keeruliste funktsioonide eristamist, koostasime tabeli ja uurisime kompleksfunktsiooni eristamise reegleid, tõime näite tuletise kasutamisest eksamiks valmistumise praktikast.

1. Algebra ja analüüsi algus, hinne 10 (kahes osas). Õpik haridusasutustele (profiilitasand), toim. A. G. Mordkovitš. -M.: Mnemosyne, 2009.

2. Algebra ja analüüsi algus, hinne 10 (kahes osas). Ülesannete raamat haridusasutustele (profiilitasand), toim. A. G. Mordkovitš. -M.: Mnemosyne, 2007.

3. Vilenkin N.Ya., Ivashev-Musatov O.S., Shvartsburd S.I. Algebra ja matemaatiline analüüs 10. klassile (õpik matemaatika süvaõppega koolide ja klasside õpilastele).- M .: Haridus, 1996.

4. Galitski M.L., Moshkovich M.M., Shvartsburd S.I. Algebra ja matemaatilise analüüsi süvaõpe.-M .: Haridus, 1997.

5. Matemaatikaülesannete kogu tehnikaülikooli sisseastujatele (M.I.Skanavi toimetamisel).-M.: Kõrgkool, 1992.a.

6. Merzlyak A.G., Polonsky V.B., Yakir M.S. Algebratreener.-K.: A.S.K., 1997.

7. Zvavich L.I., Shlyapochnik L.Ya., Chinkina Algebra ja analüüsi algus. 8-11 lahtrid: matemaatika süvaõppega koolide ja klasside käsiraamat (didaktilised materjalid).- M .: Drofa, 2002.

8. Saakyan S.M., Goldman A.M., Denisov D.V. Algebra ülesanded ja analüüsi algus (käsiraamat üldharidusasutuste 10-11 klassi õpilastele).-M .: Haridus, 2003.

9. Karp A.P. Algebra ülesannete kogu ja analüüsi algus: õpik. toetus 10-11 rakule. sügavaga Uuring matemaatika.-M.: Haridus, 2006.

10. Glazer G.I. Matemaatika ajalugu koolis. 9.-10. klass (juhend õpetajatele).-M.: Valgustus, 1983

Täiendavad veebiressursid

2. Loodusteaduste portaal ().

kodus teha

Nr 42.2, 42.3 (Algebra ja analüüsi alged, hinne 10 (kahes osas). Ülesannete vihik haridusasutustele (profiilitase) toimetanud A. G. Mordkovich. - M .: Mnemozina, 2007.)

Seda on väga lihtne meeles pidada.

Noh, me ei lähe kaugele, kaalume kohe pöördfunktsiooni. Mis on eksponentsiaalfunktsiooni pöördväärtus? Logaritm:

Meie puhul on aluseks number:

Sellist logaritmi (st baasiga logaritmi) nimetatakse "loomulikuks" ja me kasutame selle jaoks spetsiaalset tähistust: kirjutame selle asemel.

Millega on võrdne? Muidugi, .

Naturaallogaritmi tuletis on samuti väga lihtne:

Näited:

  1. Leia funktsiooni tuletis.
  2. Mis on funktsiooni tuletis?

Vastused: Eksponent ja naturaallogaritm on funktsioonid, mis on tuletise poolest ainulaadselt lihtsad. Mis tahes muu alusega eksponentsiaalsetel ja logaritmilistel funktsioonidel on erinev tuletis, mida analüüsime hiljem, kui oleme läbinud diferentseerimisreeglid.

Eristamise reeglid

Mis reeglid? Jälle uus termin?!...

Eristumine on tuletise leidmise protsess.

Ainult ja kõike. Mis on selle protsessi teine ​​sõna? Mitte proizvodnovanie... Matemaatika diferentsiaali nimetatakse funktsiooni väga juurdekasvuks at. See termin pärineb ladina sõnast differentia – erinevus. Siin.

Kõigi nende reeglite tuletamisel kasutame kahte funktsiooni, näiteks ja. Nende juurdekasvu jaoks vajame ka valemeid:

Kokku on 5 reeglit.

Konstant võetakse tuletise märgist välja.

Kui - mingi konstantne arv (konstant), siis.

Ilmselt töötab see reegel ka erinevuse jaoks: .

Tõestame seda. Las või lihtsam.

Näited.

Leia funktsioonide tuletised:

  1. punktis;
  2. punktis;
  3. punktis;
  4. punktis.

Lahendused:

  1. (tuletis on kõigis punktides sama, kuna see on lineaarne funktsioon, mäletate?);

Toote tuletis

Siin on kõik sarnane: tutvustame uut funktsiooni ja leiame selle juurdekasvu:

Tuletis:

Näited:

  1. Leia funktsioonide ja;
  2. Leia funktsiooni tuletis punktis.

Lahendused:

Eksponentfunktsiooni tuletis

Nüüd piisab teie teadmistest, et õppida leidma mis tahes eksponentsiaalfunktsiooni tuletist, mitte ainult eksponendit (kas olete juba unustanud, mis see on?).

Kus on siis mingi number.

Me juba teame funktsiooni tuletist, nii et proovime oma funktsiooni viia uuele alusele:

Selleks kasutame lihtsat reeglit: . Seejärel:

Noh, see töötas. Proovige nüüd leida tuletis ja ärge unustage, et see funktsioon on keeruline.

Juhtus?

Siin kontrollige ennast:

Valem osutus väga sarnaseks eksponendi tuletisele: nii nagu see oli, see jääb, ilmus ainult tegur, mis on vaid arv, kuid mitte muutuja.

Näited:
Leia funktsioonide tuletised:

Vastused:

See on lihtsalt arv, mida ei saa arvutada ilma kalkulaatorita, see tähendab, et seda ei saa kirjutada lihtsamal kujul. Seetõttu jäetakse see vastuses sellisele kujule.

    Pange tähele, et siin on kahe funktsiooni jagatis, seega rakendame sobivat diferentseerimisreeglit:

    Selles näites on kahe funktsiooni korrutis:

Logaritmilise funktsiooni tuletis

Siin on see sarnane: te juba teate naturaallogaritmi tuletist:

Seetõttu, et leida suvaline logaritm erineva alusega, näiteks:

Peame selle logaritmi baasi viima. Kuidas muuta logaritmi alust? Loodan, et mäletate seda valemit:

Alles nüüd kirjutame selle asemel:

Nimetajaks osutus lihtsalt konstant (konstantne arv, ilma muutujata). Tuletis on väga lihtne:

Eksponent- ja logaritmifunktsioonide tuletisi ei leia eksamil peaaegu kunagi, kuid nende tundmine ei ole üleliigne.

Kompleksfunktsiooni tuletis.

Mis on "keeruline funktsioon"? Ei, see ei ole logaritm ega kaartangens. Nendest funktsioonidest võib olla raske aru saada (kuigi kui logaritm tundub sulle keeruline, lugege teemat "Logaritmid" ja kõik saab korda), kuid matemaatikas ei tähenda sõna "keeruline" "keeruline".

Kujutage ette väikest konveierit: kaks inimest istuvad ja teevad mingeid toiminguid mõne esemega. Näiteks esimene mähib šokolaaditahvli ümbrisesse ja teine ​​seob selle paelaga. Selgub selline komposiitobjekt: lindiga mähitud ja seotud šokolaaditahvel. Šokolaaditahvli söömiseks peate tegema vastupidiseid toiminguid vastupidises järjekorras.

Loome sarnase matemaatilise konveieri: esmalt leiame arvu koosinuse ja seejärel teeme saadud arvu ruudu. Niisiis, nad annavad meile numbri (šokolaad), ma leian selle koosinuse (ümbris) ja siis sina ruudud, mis ma sain (seo see lindiga). Mis juhtus? Funktsioon. See on näide keerulisest funktsioonist: kui selle väärtuse leidmiseks teeme esimese toimingu otse muutujaga ja seejärel teise teise toimingu sellega, mis juhtus esimese tulemusel.

Teisisõnu, Kompleksfunktsioon on funktsioon, mille argument on teine ​​funktsioon: .

Meie näiteks .

Võime teha samu toiminguid vastupidises järjekorras: kõigepealt ruudud ja siis otsin saadud arvu koosinust:. Lihtne on arvata, et tulemus on peaaegu alati erinev. Keeruliste funktsioonide oluline tunnus: toimingute järjekorra muutumisel muutub funktsioon.

Teine näide: (sama). .

Viimane toiming, mida teeme, nimetatakse "väline" funktsioon ja vastavalt esimesena sooritatud toiming "sisemine" funktsioon(need on mitteametlikud nimed, kasutan neid ainult materjali lihtsas keeles selgitamiseks).

Proovige ise kindlaks teha, milline funktsioon on väline ja milline sisemine:

Vastused: Sisemiste ja välimiste funktsioonide eraldamine on väga sarnane muutujate muutumisele: näiteks funktsioonis

  1. Milliseid meetmeid me kõigepealt võtame? Kõigepealt arvutame siinuse ja alles siis tõstame selle kuubiks. Seega on see sisemine, mitte väline funktsioon.
    Ja algne funktsioon on nende koostis: .
  2. Sisemine: ; väline: .
    Eksam: .
  3. Sisemine: ; väline: .
    Eksam: .
  4. Sisemine: ; väline: .
    Eksam: .
  5. Sisemine: ; väline: .
    Eksam: .

muudame muutujaid ja saame funktsiooni.

Noh, nüüd ekstraheerime oma šokolaadi - otsige tuletist. Protseduur on alati vastupidine: kõigepealt otsime välisfunktsiooni tuletist, seejärel korrutame tulemuse sisemise funktsiooni tuletisega. Algse näite puhul näeb see välja järgmine:

Veel üks näide:

Niisiis, sõnastame lõpuks ametliku reegli:

Algoritm kompleksfunktsiooni tuletise leidmiseks:

See tundub olevat lihtne, eks?

Kontrollime näidetega:

Lahendused:

1) Sisemine: ;

Väline: ;

2) Sisemine: ;

(Ära proovi nüüdseks vähendada! Koosinuse alt ei võeta midagi välja, mäletad?)

3) Sisemine: ;

Väline: ;

Kohe on selge, et siin on kolmetasandiline kompleksfunktsioon: see on ju juba omaette keeruline funktsioon ja me võtame sealt ikkagi juure välja ehk sooritame kolmanda toimingu (paneme šokolaadi ümbrisesse ja lindiga portfellis). Kuid karta pole põhjust: igatahes “pakkime” selle funktsiooni lahti samas järjekorras nagu tavaliselt: lõpust.

See tähendab, et kõigepealt eristame juurt, seejärel koosinust ja alles seejärel sulgudes olevat avaldist. Ja siis me korrutame selle kõik.

Sellistel juhtudel on mugav toiminguid nummerdada. See tähendab, kujutame ette, mida me teame. Millises järjekorras teeme selle avaldise väärtuse arvutamiseks toiminguid? Vaatame näidet:

Mida hiljem toiming sooritatakse, seda "välisem" on vastav funktsioon. Toimingute jada - nagu varem:

Siin on pesitsus üldiselt 4-tasandiline. Teeme kindlaks tegevussuuna.

1. Radikaalne väljendus. .

2. Juur. .

3. Sinus. .

4. Ruut. .

5. Pane kõik kokku:

DERIVAAT. LÜHIDALT PEAMISEST

Funktsiooni tuletis- funktsiooni juurdekasvu ja argumendi juurdekasvu suhe argumendi lõpmata väikese juurdekasvuga:

Põhilised tuletised:

Eristamise reeglid:

Konstant võetakse tuletise märgist välja:

Summa tuletis:

Tuletistoode:

Jagatise tuletis:

Kompleksfunktsiooni tuletis:

Algoritm kompleksfunktsiooni tuletise leidmiseks:

  1. Defineerime "sisemise" funktsiooni, leiame selle tuletise.
  2. Defineerime "välise" funktsiooni, leiame selle tuletise.
  3. Korrutame esimese ja teise punkti tulemused.

Kui järgime definitsiooni, siis funktsiooni tuletis punktis on funktsiooni Δ juurdekasvu suhte piir y argumendi Δ juurdekasvuni x:

Kõik näib olevat selge. Kuid proovige arvutada selle valemiga, ütleme, funktsiooni tuletis f(x) = x 2 + (2x+ 3) · e x patt x. Kui teete kõike definitsiooni järgi, siis pärast paari lehekülge arvutusi jääte lihtsalt magama. Seetõttu on lihtsamaid ja tõhusamaid viise.

Alustuseks märgime, et nn elementaarfunktsioone saab eristada kõigist funktsioonidest. Need on suhteliselt lihtsad avaldised, mille tuletised on juba ammu arvutatud ja tabelisse kantud. Selliseid funktsioone on piisavalt lihtne meeles pidada koos nende tuletistega.

Elementaarfunktsioonide tuletised

Elementaarsed funktsioonid on kõik allpool loetletud. Nende funktsioonide tuletised peavad olema peast teada. Pealegi pole neid raske pähe õppida – seepärast on need elementaarsed.

Niisiis, elementaarfunktsioonide tuletised:

Nimi Funktsioon Tuletis
Püsiv f(x) = C, CR 0 (jah, jah, null!)
Kraad ratsionaalse astendajaga f(x) = x n n · x n − 1
Sinus f(x) = patt x cos x
Koosinus f(x) = cos x − patt x(miinus siinus)
Tangent f(x) = tg x 1/cos 2 x
Kotangent f(x) = ctg x − 1/sin2 x
naturaallogaritm f(x) = log x 1/x
Suvaline logaritm f(x) = log a x 1/(x ln a)
Eksponentfunktsioon f(x) = e x e x(midagi ei muutunud)

Kui elementaarfunktsiooni korrutada suvalise konstandiga, on ka uue funktsiooni tuletis kergesti arvutatav:

(C · f)’ = C · f ’.

Üldjuhul saab konstandid tuletise märgist välja võtta. Näiteks:

(2x 3)' = 2 ( x 3)' = 2 3 x 2 = 6x 2 .

Ilmselgelt saab elementaarfunktsioone omavahel liita, korrutada, jagada ja palju muud. Nii tekivad uued funktsioonid, mis pole enam väga elementaarsed, vaid ka teatud reeglite järgi eristatavad. Neid reegleid käsitletakse allpool.

Summa ja vahe tuletis

Laske funktsioonidel f(x) ja g(x), mille tuletised on meile teada. Näiteks võite võtta ülalpool käsitletud elementaarfunktsioonid. Seejärel leiate nende funktsioonide summa ja erinevuse tuletise:

  1. (f + g)’ = f ’ + g
  2. (fg)’ = f ’ − g

Seega on kahe funktsiooni summa (erinevus) tuletis võrdne tuletiste summaga (erinevus). Tingimusi võib olla rohkem. Näiteks, ( f + g + h)’ = f ’ + g ’ + h ’.

Rangelt võttes pole algebras "lahutamise" mõistet. On olemas mõiste "negatiivne element". Seetõttu erinevus fg saab summaks ümber kirjutada f+ (-1) g, ja siis jääb järele ainult üks valem - summa tuletis.

f(x) = x 2 + sinx; g(x) = x 4 + 2x 2 − 3.

Funktsioon f(x) on kahe elementaarfunktsiooni summa, seega:

f ’(x) = (x 2+ patt x)’ = (x 2)' + (patt x)’ = 2x+ cosx;

Me vaidleme funktsiooni kohta sarnaselt g(x). Ainult seal on juba kolm terminit (algebra seisukohalt):

g ’(x) = (x 4 + 2x 2 − 3)’ = (x 4 + 2x 2 + (−3))’ = (x 4)’ + (2x 2)’ + (−3)’ = 4x 3 + 4x + 0 = 4x · ( x 2 + 1).

Vastus:
f ’(x) = 2x+ cosx;
g ’(x) = 4x · ( x 2 + 1).

Toote tuletis

Matemaatika on loogikateadus, nii et paljud inimesed usuvad, et kui summa tuletis on võrdne tuletiste summaga, siis korrutise tuletis streikima"\u003e võrdne tuletisinstrumentide korrutisega. Aga teile viigimarjad! Toote tuletis arvutatakse täiesti erineva valemi abil. Nimelt:

(f · g) ’ = f ’ · g + f · g

Valem on lihtne, kuid sageli unustatakse. Ja mitte ainult kooliõpilased, vaid ka üliõpilased. Tulemuseks on valesti lahendatud probleemid.

Ülesanne. Leia funktsioonide tuletised: f(x) = x 3 cosx; g(x) = (x 2 + 7x– 7) · e x .

Funktsioon f(x) on kahe elementaarfunktsiooni korrutis, seega on kõik lihtne:

f ’(x) = (x 3 cos x)’ = (x 3)' cos x + x 3 (maks x)’ = 3x 2 cos x + x 3 (-sin x) = x 2 (3 cos xx patt x)

Funktsioon g(x) esimene kordaja on veidi keerulisem, kuid üldskeem sellest ei muutu. Ilmselgelt funktsiooni esimene kordaja g(x) on polünoom ja selle tuletis on summa tuletis. Meil on:

g ’(x) = ((x 2 + 7x– 7) · e x)’ = (x 2 + 7x– 7)" · e x + (x 2 + 7x– 7) ( e x)’ = (2x+ 7) · e x + (x 2 + 7x– 7) · e x = e x(2 x + 7 + x 2 + 7x −7) = (x 2 + 9x) · e x = x(x+ 9) · e x .

Vastus:
f ’(x) = x 2 (3 cos xx patt x);
g ’(x) = x(x+ 9) · e x .

Pange tähele, et viimases etapis on tuletis faktoriseeritud. Formaalselt pole see vajalik, kuid enamik tuletisi ei arvutata iseseisvalt, vaid funktsiooni uurimiseks. See tähendab, et edaspidi võrdsustatakse tuletis nulliga, selgitatakse välja selle märgid ja nii edasi. Sellisel juhul on parem, kui avaldis on jagatud teguriteks.

Kui on kaks funktsiooni f(x) ja g(x) ja g(x) ≠ 0 meid huvitaval hulgal, saame defineerida uue funktsiooni h(x) = f(x)/g(x). Sellise funktsiooni jaoks leiate ka tuletise:

Pole nõrk, eks? Kust tuli miinus? Miks g 2? Aga niimoodi! See on üks keerulisemaid valemeid - ilma pudelita ei saa te sellest aru. Seetõttu on parem seda uurida konkreetsete näidete abil.

Ülesanne. Leia funktsioonide tuletised:

Iga murdosa lugejas ja nimetajas on elementaarfunktsioonid, seega vajame ainult jagatise tuletise valemit:


Traditsiooniliselt arvestame lugeja tegurite hulka - see lihtsustab vastust oluliselt:

Keeruline funktsioon ei pruugi olla poole kilomeetri pikkune valem. Näiteks piisab funktsiooni võtmisest f(x) = patt x ja asendada muutuja x, ütleme, edasi x 2+ln x. Selgub f(x) = patt ( x 2+ln x) on keeruline funktsioon. Tal on ka tuletis, kuid selle leidmine ülalkirjeldatud reeglite järgi ei tööta.

Kuidas olla? Sellistel juhtudel aitab muutuja asendamine ja kompleksfunktsiooni tuletise valem:

f ’(x) = f ’(t) · t', kui x asendatakse t(x).

Reeglina on olukord selle valemi mõistmisega veelgi kurvem kui jagatise tuletisega. Seetõttu on parem seda ka konkreetsete näidetega selgitada, iga sammu üksikasjaliku kirjeldusega.

Ülesanne. Leia funktsioonide tuletised: f(x) = e 2x + 3 ; g(x) = patt ( x 2+ln x)

Pange tähele, et kui funktsioonis f(x) avaldise 2 asemel x+3 saab olema lihtne x, siis saame elementaarfunktsiooni f(x) = e x. Seetõttu teeme asendused: olgu 2 x + 3 = t, f(x) = f(t) = e t. Otsime kompleksfunktsiooni tuletist valemiga:

f ’(x) = f ’(t) · t ’ = (e t)’ · t ’ = e t · t

Ja nüüd - tähelepanu! Pöördasenduse teostamine: t = 2x+ 3. Saame:

f ’(x) = e t · t ’ = e 2x+ 3 (2 x + 3)’ = e 2x+ 3 2 = 2 e 2x + 3

Nüüd vaatame funktsiooni g(x). Ilmselgelt tuleb välja vahetada. x 2+ln x = t. Meil on:

g ’(x) = g ’(t) · t' = (patt t)’ · t' = cos t · t

Vastupidine asendamine: t = x 2+ln x. Seejärel:

g ’(x) = cos( x 2+ln x) · ( x 2+ln x)' = cos ( x 2+ln x) · (2 x + 1/x).

See on kõik! Nagu viimasest avaldisest näha, on kogu probleem taandatud summa tuletise arvutamisele.

Vastus:
f ’(x) = 2 e 2x + 3 ;
g ’(x) = (2x + 1/x) cos( x 2+ln x).

Väga sageli kasutan oma tundides termini "tuletis" asemel sõna "insult". Näiteks summa löök on võrdne löökide summaga. Kas see on selgem? See on hea.

Seega taandub tuletise arvutamine just nendest löökidest vabanemisele vastavalt ülalkirjeldatud reeglitele. Viimase näitena pöördume tagasi ratsionaalse astendajaga tuletusastme juurde:

(x n)’ = n · x n − 1

Seda teavad rollis vähesed n võib olla murdarv. Näiteks juur on x 0,5 . Aga mis siis, kui juure all on midagi keerulist? Jällegi selgub keeruline funktsioon - neile meeldib selliseid konstruktsioone testides ja eksamites anda.

Ülesanne. Leia funktsiooni tuletis:

Esmalt kirjutame juure ümber ratsionaalse astendajaga astmeks:

f(x) = (x 2 + 8x − 7) 0,5 .

Nüüd teeme asendus: las x 2 + 8x − 7 = t. Leiame tuletise valemiga:

f ’(x) = f ’(t) · t ’ = (t 0,5)" t' = 0,5 t−0,5 t ’.

Teeme pöördasenduse: t = x 2 + 8x− 7. Meil ​​on:

f ’(x) = 0,5 ( x 2 + 8x– 7) –0,5 ( x 2 + 8x− 7)' = 0,5 (2 x+ 8) ( x 2 + 8x − 7) −0,5 .

Lõpuks tagasi juurte juurde:

Millel analüüsisime lihtsamaid tuletisi ning tutvusime ka diferentseerimise reeglitega ja mõne tuletise leidmise tehnikaga. Seega, kui te ei tunne funktsioonide tuletisi väga hästi või pole selle artikli mõned punktid täiesti selged, lugege esmalt ülaltoodud õppetund. Häälestage end tõsisele meeleolule - materjal ei ole lihtne, kuid ma püüan selle siiski lihtsalt ja selgelt esitada.

Praktikas tuleb keerulise funktsiooni tuletisega tegeleda väga sageli, ma isegi ütleks, et peaaegu alati, kui antakse ülesandeid tuletisi leidmiseks.

Vaatame tabelist reeglit (nr 5) keeruka funktsiooni eristamiseks:

Me mõistame. Kõigepealt vaatame tähistust. Siin on meil kaks funktsiooni - ja ning funktsioon piltlikult öeldes on pesastatud funktsioonis . Sellist funktsiooni (kui üks funktsioon on teise sees pesastatud) nimetatakse kompleksfunktsiooniks.

Kutsun funktsiooni välja väline funktsioon ja funktsioon – sisemine (või pesastatud) funktsioon.

! Need määratlused ei ole teoreetilised ja ei tohiks esineda ülesannete lõplikus vormis. Kasutan mitteametlikke väljendeid "väline funktsioon", "sisemine" ainult selleks, et teil oleks materjalist lihtsam aru saada.

Olukorra selgitamiseks kaaluge:

Näide 1

Leia funktsiooni tuletis

Siinuse all pole mitte ainult täht "x", vaid kogu avaldis, nii et tuletise kohene leidmine tabelist ei toimi. Samuti märkame, et siin on võimatu rakendada nelja esimest reeglit, näib olevat erinevus, kuid tõsiasi on see, et siinust pole võimalik "lahti rebida":

Selles näites on juba minu selgitustest intuitiivselt selge, et funktsioon on kompleksfunktsioon ja polünoom on sisemine funktsioon (kinnitamine) ja väline funktsioon.

Esimene samm, mida tuleb sooritada kompleksfunktsiooni tuletise leidmisel mõista, milline funktsioon on sisemine ja milline väline.

Lihtsate näidete puhul näib olevat selge, et siinuse all on pesastatud polünoom. Aga mis siis, kui see pole ilmne? Kuidas täpselt kindlaks teha, milline funktsioon on väline ja milline sisemine? Selleks teen ettepaneku kasutada järgmist tehnikat, mida saab läbi viia vaimselt või mustandi järgi.

Kujutagem ette, et peame kalkulaatoriga avaldise väärtuse välja arvutama (ühe asemel võib olla suvaline arv).

Mida me kõigepealt arvutame? Esiteks peate tegema järgmise toimingu: , seega on polünoom sisemine funktsioon:

Teiseks peate leidma, nii et siinus - on väline funktsioon:

Pärast meie MÕISTA sisemiste ja välimiste funktsioonide puhul on aeg rakendada liitfunktsioonide eristamise reeglit .

Hakkame otsustama. Õppetunnist Kuidas tuletist leida? mäletame, et mis tahes tuletise lahenduse kujundamine algab alati nii - lisame avaldise sulgudesse ja tõmbame paremasse ülaossa kriipsu:

Esiteks leiame välisfunktsiooni tuletise (siinuse), vaatame elementaarfunktsioonide tuletisi tabelit ja paneme tähele, et . Kõik tabelivalemid on rakendatavad isegi siis, kui "x" on asendatud kompleksavaldisega, sel juhul:

Pange tähele, et sisemine funktsioon ei ole muutunud, me ei puuduta seda.

Noh, see on üsna ilmne

Valemi rakendamise tulemus puhas näeb välja selline:

Konstanttegur paigutatakse tavaliselt avaldise algusesse:

Kui tekib arusaamatus, kirjutage otsus paberile ja lugege uuesti selgitusi.

Näide 2

Leia funktsiooni tuletis

Näide 3

Leia funktsiooni tuletis

Nagu alati, kirjutame:

Me selgitame välja, kus meil on väline funktsioon ja kus on sisemine. Selleks proovime (vaimselt või mustandi järgi) arvutada avaldise väärtuse . Mida tuleb kõigepealt teha? Kõigepealt peate arvutama, millega alus on võrdne:, mis tähendab, et polünoom on sisemine funktsioon:

Ja alles siis tehakse eksponentsiatsioon, seetõttu on võimsusfunktsioon väline funktsioon:

Vastavalt valemile , tuleb esmalt leida välisfunktsiooni tuletis, antud juhul aste. Otsime tabelist soovitud valemit:. Kordame uuesti: mis tahes tabelivalem ei kehti mitte ainult "x", vaid ka kompleksavaldise jaoks. Seega kompleksfunktsiooni diferentseerimisreegli rakendamise tulemus järgmine:

Rõhutan veel kord, et kui võtame välisfunktsiooni tuletise, siis sisemine funktsioon ei muutu:

Nüüd jääb üle leida sisemise funktsiooni väga lihtne tuletis ja tulemust veidi “kammida”:

Näide 4

Leia funktsiooni tuletis

See on näide ise lahendamiseks (vastus tunni lõpus).

Keerulise funktsiooni tuletise mõistmise kinnistamiseks toon ilma kommentaarideta näite, proovige omal käel aru saada, põhjendage, kus on väline ja kus on sisemine funktsioon, miks ülesandeid nii lahendatakse?

Näide 5

a) Leia funktsiooni tuletis

b) Leia funktsiooni tuletis

Näide 6

Leia funktsiooni tuletis

Siin on meil juur ja juure eristamiseks tuleb see esitada astmena. Seega viime funktsiooni esmalt eristamiseks õigesse vormi:

Funktsiooni analüüsides jõuame järeldusele, et kolme liikme summa on sisefunktsioon ja astendamine on välisfunktsioon. Rakendame kompleksfunktsiooni diferentseerimise reeglit :

Astet esitatakse jällegi radikaalina (juur) ja sisefunktsiooni tuletise puhul rakendame summa eristamiseks lihtsat reeglit:

Valmis. Samuti saab avaldise tuua sulgudes ühise nimetaja juurde ja kirjutada kõik ühe murruna. See on muidugi ilus, kuid kui saadakse tülikad pikad tuletised, on parem seda mitte teha (lihtne on segadusse sattuda, tarbetu viga teha ja õpetajal on seda ebamugav kontrollida).

Näide 7

Leia funktsiooni tuletis

See on näide ise lahendamiseks (vastus tunni lõpus).

Huvitav on märkida, et mõnikord võib keeruka funktsiooni eristamise reegli asemel kasutada jagatise eristamise reeglit , kuid selline lahendus näeb välja ebatavaline perverssus. Siin on tüüpiline näide:

Näide 8

Leia funktsiooni tuletis

Siin saab kasutada jagatise diferentseerimise reeglit , kuid palju tulusam on tuletise leidmine keeruka funktsiooni diferentseerimisreegli abil:

Valmistame funktsiooni diferentseerimiseks ette - võtame tuletisest välja miinusmärgi ja tõstame koosinuse lugejani:

Koosinus on sisemine funktsioon, astendamine on väline funktsioon.
Kasutame oma reeglit :

Leiame sisemise funktsiooni tuletise, lähtestame koosinuse allapoole:

Valmis. Vaadeldavas näites on oluline mitte märkides segadusse sattuda. Muide, proovige seda reegliga lahendada , peavad vastused ühtima.

Näide 9

Leia funktsiooni tuletis

See on näide ise lahendamiseks (vastus tunni lõpus).

Seni oleme käsitlenud juhtumeid, kus keerulises funktsioonis oli meil ainult üks pesa. Praktilistes ülesannetes võib sageli leida tuletisi, kus nagu pesitsevatel nukkudel üks teise sisse pesatakse korraga 3 või isegi 4-5 funktsiooni.

Näide 10

Leia funktsiooni tuletis

Mõistame selle funktsiooni manuseid. Proovime avaldist hinnata eksperimentaalse väärtuse abil. Kuidas me arvestaksime kalkulaatoriga?

Kõigepealt peate leidma, mis tähendab, et arcsiinus on sügavaim pesa:

See ühtsuse arcsiini tuleks seejärel ruudus teha:

Ja lõpuks tõstame seitse võimu:

See tähendab, et selles näites on meil kolm erinevat funktsiooni ja kaks pesastust, samas kui sisemine funktsioon on arcsinus ja välimine funktsioon on eksponentsiaalne funktsioon.

Hakkame otsustama

Reegli järgi esmalt tuleb võtta välisfunktsiooni tuletis. Vaatame tuletiste tabelit ja leiame eksponentsiaalfunktsiooni tuletise: Ainus erinevus on see, et "x" asemel on meil kompleksavaldis, mis ei muuda selle valemi kehtivust. Niisiis, kompleksfunktsiooni diferentseerimisreegli rakendamise tulemus järgmiseks.

Astumusfunktsiooni tuletise valemi tuletamine (x astmele a). Arvestatakse juurte tuletisi x-st. Kõrgemat järku võimsusfunktsiooni tuletise valem. Näiteid tuletisinstrumentide arvutamisest.

Sisu

Vaata ka: Positiivne funktsioon ja juured, valemid ja graafik
Võimsusfunktsiooni graafikud

Põhivalemid

x tuletis a astmega on x korda miinus ühe astmega:
(1) .

x-i n-nda juure tuletis m-ndast astmest on:
(2) .

Pädevusfunktsiooni tuletise valemi tuletamine

Juhtum x > 0

Vaatleme muutuja x astmefunktsiooni eksponendiga a:
(3) .
Siin a on suvaline reaalarv. Vaatleme esmalt juhtumit.

Funktsiooni (3) tuletise leidmiseks kasutame astmefunktsiooni omadusi ja teisendame selle järgmisele kujule:
.

Nüüd leiame tuletise, rakendades:
;
.
siin .

Valem (1) on tõestatud.

Valemi tuletamine x astme n juure astmeni m

Nüüd kaaluge funktsiooni, mis on järgmise vormi juur:
(4) .

Tuletise leidmiseks teisendame juure võimsusfunktsiooniks:
.
Võrreldes valemiga (3), näeme seda
.
Siis
.

Valemi (1) abil leiame tuletise:
(1) ;
;
(2) .

Praktikas ei ole vaja valemit (2) pähe õppida. Palju mugavam on esmalt teisendada juured astmefunktsioonideks ja seejärel leida nende tuletised valemi (1) abil (vt näiteid lehe lõpus).

Juhtum x = 0

Kui , siis on eksponentsiaalfunktsioon defineeritud ka muutuja x = väärtusele 0 . Leiame funktsiooni (3) tuletise x = korral 0 . Selleks kasutame tuletise määratlust:
.

Asendage x = 0 :
.
Sel juhul peame tuletise all silmas parempoolset limiiti, mille puhul .

Niisiis leidsime:
.
Sellest on näha, et kell , .
Kell , .
Kell , .
See tulemus saadakse ka valemiga (1):
(1) .
Seetõttu kehtib valem (1) ka x = korral 0 .

juhtum x< 0

Mõelge uuesti funktsioonile (3):
(3) .
Mõne konstandi a väärtuse puhul on see defineeritud ka muutuja x negatiivsete väärtuste jaoks. Nimelt olgu a ratsionaalne arv. Siis saab seda esitada taandamatu murdena:
,
kus m ja n on täisarvud, millel puudub ühine jagaja.

Kui n on paaritu, siis on eksponentsiaalfunktsioon defineeritud ka muutuja x negatiivsete väärtuste jaoks. Näiteks kui n = 3 ja m = 1 meil on x-i kuupjuur:
.
See on määratletud ka x negatiivsete väärtuste jaoks.

Leiame võimsusfunktsiooni (3) tuletise konstandi a ratsionaalsetele väärtustele, mille jaoks see on defineeritud. Selleks esindame x-i järgmisel kujul:
.
Siis ,
.
Leiame tuletise, võttes konstandi tuletise märgist välja ja rakendades kompleksfunktsiooni diferentseerimise reeglit:

.
siin . Aga
.
Sest siis
.
Siis
.
See tähendab, et valem (1) kehtib ka:
(1) .

Kõrgemate tellimuste tuletisväärtpaberid

Nüüd leiame astmefunktsiooni kõrgemat järku tuletised
(3) .
Oleme juba leidnud esimest järku tuletise:
.

Võttes tuletise märgist välja konstandi a, leiame teist järku tuletise:
.
Samamoodi leiame kolmanda ja neljanda järgu tuletised:
;

.

Siit on selge, et suvalise n-nda järku tuletis sellel on järgmine vorm:
.

Märka seda kui a on naturaalarv, , siis n-s tuletis on konstantne:
.
Siis on kõik järgnevad tuletised võrdsed nulliga:
,
aadressil .

Tuletisnäited

Näide

Leia funktsiooni tuletis:
.

Teisendame juured astmeteks:
;
.
Seejärel võtab algfunktsioon järgmise kuju:
.

Leiame kraadide tuletised:
;
.
Konstandi tuletis on null:
.