Плотность энергии и интенсивность электромагнитной волны. Интенсивность освещения и способы ее измерения

Интенси́вность - скалярная физическая величина, количественно характеризующая мощность, переносимую волной в направлении распространения. Численно интенсивность равна усреднённой за период колебаний волны мощности излучения, проходящей через единичную площадку, расположенную перпендикулярно направлению распространения энергии. В математической форме это может быть выражено следующим образом:

где - период волны, - мощность, переносимая волной через площадку .

Интенсивность волны связана со средней плотностью энергии в волне и скоростью распространения волны следующим соотношением:

Единицей измерения интенсивности в Международной системе единиц (СИ) является Вт/м², в системе СГС - эрг/с·см².

Объёмная плотность энергии электромагнитного поля в линейной изотропной среде, как известно из электродинамики, даётся выражением (мы учли здесь также связь между векторами Е иН в электромагнитной волне):

Вектор плотности потока энергии электромагнитной волны (то, что в теории упругих волн называется вектором Умова) называется вектором Умова-Пойнтинга, или чаще просто вектором Пойнтинга Р :

Модуль среднего значения вектора Пойнтинга называется интенсивностью электромагнитной волны:

В случае синусоидальной монохроматической плоской (когда плоскости колебаний векторов Е и Н не меняются со временем) электромагнитной волны, распространяющейся в направлении х :

для интенсивности получается:

Следует обратить внимание, что интенсивность электромагнитной волны зависит от амплитуды (либо электрического, либо магнитного поля; они связаны), но не зависит от частоты волны - в отличие от интенсивности упругих механических волн.

Понятие когерентность.

В физике когерентностью называется скоррелированность (согласованность) нескольких колебательных или волновых процессов во времени, проявляющаяся при их сложении. Колебания когерентны, если разность их фаз постоянна во времени, и при сложении колебаний получается колебание той же частоты.

Классический пример двух когерентных колебаний - это два синусоидальных колебания одинаковой частоты.

Когерентность волны означает, что в различных пространственных точках волны осцилляции происходят синхронно, то есть разность фаз между двумя точками не зависит от времени. Отсутствие когерентности, следовательно - ситуация, когда разность фаз между двумя точками не постоянна, а меняется со временем. Такая ситуация может иметь место, если волна была сгенерирована не единым излучателем, а совокупностью одинаковых, но независимых (то есть нескоррелированных) излучателей.

Изучение когерентности световых волн приводит к понятиям временно́й и пространственной когерентности. При распространении электромагнитных волн в волноводахмогут иметь место фазовые сингулярности. В случае волн на воде когерентность волны определяет так называемая вторая периодичность.

Без когерентности невозможно наблюдать такое явление, как интерференция.

Интерференция волн - взаимное увеличение или уменьшение результирующей амплитуды двух или нескольких когерентных волн при их наложении друг на друга. Сопровождается чередованием максимумов (пучностей) и минимумов (узлов) интенсивности в пространстве. Результат интерференции (интерференционная картина) зависит от разности фазнакладывающихся волн.

Интерферировать могут все волны, однако устойчивая интерференционная картина будет наблюдаться только в том случае, если волны имеют одинаковую частоту и колебания в них не ортогональны. Интерференция может быть стационарной и нестационарной. Стационарную интерференционную картину могут давать только полностью когерентные волны. Например, две сферические волны на поверхности воды, распространяющиеся от двух когерентных точечных источников, при интерференции дадут результирующую волну, фронтом которой будет сфера.

При интерференции энергия волн перераспределяется в пространстве. Это не противоречит закону сохранения энергии потому, что в среднем, для большой области пространства, энергия результирующей волны равна сумме энергий интерферирующих волн.

При наложении некогерентных волн средняя величина квадрата амплитуды (то есть интенсивность результирующей волны) равна сумме квадратов амплитуд (интенсивностей) накладывающихся волн. Энергия результирующих колебаний каждой точки среды равна сумме энергий её колебаний, обусловленных всеми некогерентными волнами в отдельности. Именно отличие результирующей интенсивности волнового процесса от суммы интенсивностей его составляющих и есть признак интерференции.

Может очень сильно различаться, причем визуально мы не в состоянии определить степень освещенности, т. к. человеческий глаз наделен способностью приспосабливаться к разному освещению. Между тем, интенсивность освещения имеет чрезвычайно важное значение в самых разнообразных сферах деятельности. Для примера можно взять процесс кино- или видеосъемки, а также, допустим, выращивание комнатных растений.

Человеческий глаз воспринимает световые от 380 нм (фиолетового цвета) до 780 нм (красного). Лучше всего мы воспринимаем волны с длиной, как раз не самой пригодной для растений. Яркое и приятное нашему глазу освещение может быть неподходящим для растений в теплице, которые могут недополучать важных для фотосинтеза волн.

Интенсивность света измеряется в люксах. Ярким солнечным полднем в нашей средней полосе она достигает примерно 100 000 люкс, к вечеру снижается до 25 000 люкс. В густой тени ее значение составляет десятые доли этих величин. В помещениях интенсивность солнечного освещения значительно меньше, т. к. свет ослаблен деревьями и оконными стеклами. Самое яркое освещение (на южном окне летом сразу за стеклами) в лучшем случае 3-5 тысяч люкс, на середине комнаты (в 2-3 метрах от окна) - всего 500 люкс. Это минимально необходимое для выживания растений освещение. Для нормального роста даже неприхотливым требуется не менее 800 люкс.

Интенсивность света на глаз мы определить не можем. Для этого существует прибор, название которого - люксметр. При его покупке необходимо уточнить измеряемый им диапазон волн, т.к. возможности прибора хоть и шире возможностей человеческого глаза, но все же ограничены.

Интенсивность света также можно измерить с помощью фотоаппарата или фотоэкспонометра. Правда, придется сделать перерасчет полученных единиц в люксы. Для проведения измерения нужно в месте замера положить белый лист бумаги и навести на него фотоаппарат, светочувствительность которого установлена на 100, а диафрагма на 4. Определив выдержку, следует ее знаменатель умножить на 10, полученное значение будет приблизительно соответствовать освещению в люксах. Например, при полученной выдержке 1/60 сек. освещение около 600 люкс.

Если вы увлекаетесь разведением цветов и уходом за ними, то, конечно же, знаете, что энергия света жизненно необходима растениям для нормального фотосинтеза. Свет оказывает влияние на скорость роста, направление, развитие цветка, размер и форму его листьев. С уменьшением световой интенсивности пропорционально замедляются все процессы в растениях. Количество его зависит от того, насколько удален источник света, от стороны горизонта, на которую обращено окно, от степени затененности уличными деревьями, от наличия штор или жалюзи. Чем светлее помещение, тем активнее происходит рост растений и тем больше им требуется воды, тепла и удобрений. Если растения растут в тени, то и ухода они требуют в меньшем количестве.

При съемке фильма или телевизионной передачи освещенность имеет очень важное значение. Высококачественная съемка возможна при освещенности порядка 1000 люкс, достигаемой в телевизионной студии при помощи специальных ламп. Но приемлемое качество изображения можно получить и при меньшем освещении.

Интенсивность освещения в студии до начала и в процессе съемки измеряют с помощью экспонометров или высококачественных цветных мониторов, которые подключаются к видеокамере. До начала съемки лучше всего пройтись с экспонометром по всей съемочной площадке с целью определения затемненных или чрезмерно освещенных ее участков во избежание негативных явлений при просмотре отснятого материала. Кроме того, правильной регулировкой освещения можно добиться дополнительной выразительности снимаемой сцены и нужных режиссерских эффектов.

Таким образом, в геометрической оптике световую волну можно рассматривать как пучок лучей. Лучи, однако, сами по себе определяют лишь направление распространения света в каждой точке; остается вопрос о распределении интенсивности света в пространстве.

Выделим на какой-либо из волновых поверхностей рассматриваемого пучка бесконечно малый элемент. Из дифференциальной геометрии известно, что всякая поверхность имеет в каждой своей точке два, вообще говоря, различных главных радиуса кривизны.

Пусть (рис. 7) - элементы главных кругов кривизны, проведенные на данном элементе волновой поверхности. Тогда лучи, проходящие через точки а и с, пересекутся друг с другом в соответствующем центре кривизны а лучи, проходящие через b и d, пересекутся в другом центре кривизны .

При данных углах раствора лучей, исходящих из длины отрезков пропорциональны соответствующим радиусам кривизны (т. е. длинам и ); площадь элемента поверхности пропорциональна произведению длин , т. е. пропорциональна Другими словами, если рассматривать элемент волновой поверхности, ограниченный определенным рядом лучей, то при движении вдоль них площадь этого элемента будет меняться пропорционально .

С другой стороны, интенсивность, т. е. плотность потока энергии, обратно пропорциональна площади поверхности, через которую проходит данное количество световой энергии. Таким образом, мы приходим к выводу, что интенсивность

Эту формулу надо понимать следующим образом. На каждом данном луче (АВ на рис. 7) существуют определенные точки и , являющиеся центрами кривизны всех волновых поверхностей, пересекающих данный луч. Расстояния и от точки О пересечения волновой поверхности с лучом до точек являются радиусами кривизны волновой поверхности в точке О. Таким образом, формула (54,1) определяет интенсивность света в точке О на данном луче как функцию от расстояний до определенных точек на этом дуче. Подчеркнем, что эта формула непригодна для сравнения интенсивностей в разных точках одной и той же волновой поверхности.

Поскольку интенсивность определяется квадратом модуля поля, то для изменения самого поля вдоль луча мы можем написать:

где в фазовом множителе под R может поразумеваться как так и величины отличаются друг от друга только постоянным (для данного луча) множителем, поскольку разность , расстояние между обоими центрами кривизны, постоянна.

Если оба радиуса кривизны волновой поверхности совпадают, то (54,1) и (54,2) имеют вид

Это имеет место, в частности, всегда в тех случаях, когда свет испускается точечным источником (волновые поверхности являются тогда концентрическими сферами, a R - расстоянием до источника света).

Из (54,1) мы видим, что интенсивность обращается в бесконечность в точках т. е. в центрах кривизны волновых поверхностей. Применяя это ко всем лучам в пучке, находим, что интенсивность света в данном пучке обращается в бесконечность, вообще говоря, на двух поверхностях - геометрическом месте всех центров кривизны волновых поверхностей. Эти поверхности носят название каустик. В частном случае пучка лучей со сферическими волновыми поверхностями обе каустики сливаются в одну точку {фокус).

Отметим, что, согласно известным из дифференциальной геометрии свойствам геометрического места центров кривизны семейства поверхностей, лучи касаются каустик.

Надо иметь в виду, что (при выпуклых волновых поверхностях) центры кривизны волновых поверхностей могут оказаться лежащими не на самих лучах, а на их продолжениях за оптическую систему, от которой они исходят. В таких случаях говорят о мнимых каустиках (или мнимых фокусах). Интенсивность света при этом нигде не обращается в бесконечность.

Что касается обращения интенсивности в бесконечность, то в действительности, разумеется, интенсивность в точках каустики делается большой, но остается конечной (см. задачу к § 59). Формальное обращение в бесконечность означает, что приближение геометрической оптики становится во всяком случае неприменимым вблизи каустик. С этим же обстоятельством связано и то, что изменение фазы вдоль луча может определяться формулой (54,2) только на участках луча, не включающих в себя точек его касания с каустиками. Ниже (в § 59) будет показано, что в действительности при прохождении мимо каустики фаза поля уменьшается на . Это значит, что если на участке луча до его касания первой каустики поле пропорционально множителю - координата вдоль луча), то после прохождения мимо каустики поле будет пропорционально То же самое произойдет вблизи точки касания второй каустики, и за этой точкой поле будет пропорционально

Вычислим теперь полную энергию, излучаемую зарядом при ускорении. Для общности возьмем случай произвольного ускорения, считая, однако, движение нерелятивистским. Когда ускорение направлено, скажем, по вертикали, электрическое поле излучения равно произведению заряда на проекцию запаздывающего ускорения, деленному на расстояние. Таким образом, нам известно электрическое поле в любой точке, а отсюда мы знаем энергию , проходящую через единичную площадку за .

Величина часто встречается в формулах распространения радиоволн. Обратную ей величину можно назвать импедансом вакуума (или сопротивлением вакуума); она равна . Отсюда мощность (в ваттах на квадратный метр) есть средний квадрат поля, деленный на 377.

С помощью формулы (29.1) для электрического поля мы получаем

, (32.2)

где - мощность на , излучаемая под углом . Как уже отмечалось, обратно пропорционально расстоянию. Интегрируя, получаем отсюда полную мощность, излучаемую во всех направлениях. Для этого сначала умножим на площадь полоски сферы, тогда мы получим поток энергии в интервале угла (фиг. 32.1). Площадь полоски вычисляется следующим образом: если радиус равен , то толщина полоски равна , а длина , поскольку радиус кольцевой полоски есть . Таким образом, площадь полоски равна

(32.3)

Фигура 32.1. Площадь кольца на сфере, равна .

Умножая поток [мощность на , согласно формуле (32.2)] на площадь полоски, найдем энергию, излучаемую в интервале углов и ; далее нужно проинтегрировать по всем углам от до :

(32.4)

При вычислении воспользуемся равенством и в результате получим . Отсюда окончательно

Необходимо сделать несколько замечаний по поводу этого выражения. Прежде всего, поскольку есть вектор, то в формуле (32.5) означает , т. е. квадрат длины вектора. Во-вторых, в формулу (32.2) для потока входит ускорение, взятое с учетом запаздывания, т. е. ускорение в тот момент времени, когда была излучена энергия, проходящая сейчас через поверхность сферы. Может возникнуть мысль, что энергия действительно была излучена точно в указанный момент времени. Но это не совсем правильно. Момент излучения нельзя определить точно. Можно вычислить результат только такого движения, например колебания и т. п., где ускорение в конце концов исчезает. Следовательно, мы можем найти только полный поток энергии за весь период колебаний, пропорциональный среднему за период квадрату ускорения. Поэтому в (32.5) должно означать среднее по времени от квадрата ускорения. Для такого движения, когда ускорение в начале и в конце обращается в нуль, полная излученная энергия равна интегралу по времени от выражения (32.5).

Посмотрим, что дает формула (32.5) для осциллирующей системы, для которой ускорение имеет вид . Среднее за период от квадрата ускорения равно (при возведении в квадрат надо помнить, что на самом деле вместо экспоненты должна входить ее действительная часть - косинус, а среднее от дает ):

Следовательно,

Эти формулы были получены сравнительно недавно - в начале XX века. Это замечательные формулы, они имели огромное историческое значение, и о них стоило бы почитать в старых книгах по физике. Правда, там использовалась другая система единиц, а не система СИ. Однако в конечных результатах, относящихся к электронам, эти осложнения можно исключить с помощью следующего правила соответствия: величина где - заряд электрона (в кулонах), раньше записывалась как . Легко убедиться, что в системе СИ значение численно равно , поскольку мы знаем, что и . В дальнейшем мы будем часто пользоваться удобным обозначением (32.7)

Если это численное значение подставить в старые формулы, то все остальные величины в них можно считать определенными в системе СИ. Например, формула (32.5) прежде имела вид . А потенциальная энергия протона и электрона на расстоянии есть или , где СИ.