Применение полного отражения света. Явление полного внутреннего отражения света и его применение

Распространение электромагнитных волн в различных средах подчиняется законам отражения и преломления. Из этих законов при определенных условиях следует один интересный эффект, который в физике получил название полного внутреннего отражения света. Подробнее рассмотрим, что этот эффект собой представляет.

Отражение и преломление

Перед тем как переходить непосредственно к рассмотрению внутреннего полного отражения света, необходимо дать пояснение процессам отражения и преломления.

Под отражением понимают изменение направления движения светового луча в той же среде, когда он встречает какую-либо поверхность раздела. Например, если направить от лазерной указки на зеркало, то можно наблюдать описанный эффект.

Преломление - это, так же как и отражение, изменение направления движения света, но уже не в первой, а во второй среде. Результатом этого явления будет искажение очертаний предметов и их пространственного расположения. Бытовым примером преломления является излом карандаша или ручки, если он/она помещается в стакан с водой.

Преломление и отражение связаны друг с другом. Они практически всегда присутствуют вместе: часть энергии луча отражается, а другая часть преломляется.

Оба явления - это результат применение принципа Ферма. Он утверждает, что свет движется по такой траектории между двумя точками, которая займет у него наименьшее время.

Поскольку отражение - это эффект, происходящий в одной среде, а преломление - в двух средах, то для последнего важно, чтобы обе среды были прозрачными для электромагнитных волн.

Понятие о показателе преломления

Показатель преломления является важной величиной для математического описания рассматриваемых явлений. Показатель преломления конкретной среды определяется так:

Где c и v - скорости света в вакууме и веществе соответственно. Величина v всегда меньше, чем c, поэтому показатель n будет больше единицы. Безразмерный коэффициент n показывает, как сильно свет в веществе (среде) будет отставать от света в вакууме. Различие этих скоростей ведет к возникновению явления преломления.

Скорость света в веществе коррелирует с плотностью последнего. Чем плотнее среда, тем тяжелее свету в ней двигаться. Например, для воздуха n = 1,00029, то есть почти как для вакуума, для воды же n = 1,333.

Отражения, преломление и их законы

Ярким примером результата полного отражения являются блестящие поверхности алмаза. Показатель преломления для алмаза равен 2,43, поэтому многие лучи света, попав в драгоценный камень, испытывают многократное полное отражение, прежде чем выйти из него.

Задача на определение критического угла θc для алмаза

Рассмотрим простую задачу, где покажем, как использовать приведенные формулы. Необходимо рассчитать, на сколько изменится критический угол полного отражения, если алмаз из воздуха поместить в воду.

Посмотрев в таблице значения для показателей преломления указанных сред, выпишем их:

  • для воздуха: n 1 = 1,00029;
  • для воды: n 2 = 1,333;
  • для алмаза: n 3 = 2,43.

Критический угол для пары алмаз-воздух составляет:

θ c1 = arcsin(n 1 /n 3) = arcsin(1,00029/2,43) ≈ 24,31 o .

Как видно, критический угол для этой пары сред достаточно маленький, то есть только те лучи могут выйти из алмаза в воздух, которые будут находиться к нормали ближе, чем 24,31 o .

Для случая алмаза в воде получаем:

θ c2 = arcsin(n 2 /n 3) = arcsin(1,333/2,43) ≈ 33,27 o .

Увеличение критического угла составило:

Δθ c = θ c2 - θ c1 ≈ 33,27 o - 24,31 o = 8,96 o .

Это незначительное увеличение критического угла для полного отражения света в алмазе приводит к тому, что он в воде блестит практически так же, как на воздухе.

Типичными световыми эффектами, с которыми каждый человек сталкивается часто в быту, являются отражение и преломление. В данной статье рассмотрим случай, когда оба эффекта проявляют себя в рамках одного процесса, речь пойдет о явлении внутреннего полного отражения.

Отражение света

Перед тем как рассматривать явление следует познакомиться с эффектами обычного отражения и преломления. Начнем с первого из них. Для простоты будем рассматривать только свет, хотя эти явления характерны для волны любой природы.

Под отражением понимают изменение одной прямолинейной траектории, вдоль которой движется луч света, на другую прямолинейную траекторию, когда он встречает на своем пути препятствие. Этот эффект можно наблюдать, если направить лазерную указку на зеркало. Появление изображений неба и деревьев при взгляде на водную поверхность - это тоже результат отражения солнечного света.

Для отражения справедлив следующий закон: углы падения и отражения лежат в одной плоскости вместе с перпендикуляром к отражающей поверхности и являются равными друг другу.

Преломление света

Эффект преломления подобен отражению, только возникает он, если препятствие на пути светового луча представляет собой другую прозрачную среду. В этом случае часть первоначального луча отражается от поверхности, а часть проходит во вторую среду. Эта последняя часть называется преломленным лучом, а угол, который он образует с перпендикуляром к поверхности раздела сред, носит название угла преломления. Преломленный луч лежит в той же плоскости, что отраженный и падающий.

Яркими примерами преломления можно назвать излом карандаша в стакане с водой или обманчивая глубина озера, когда человек смотрит сверху на его дно.

Математически это явление описывают с помощью закона Снелла. Соответствующая формула выглядит так:

Здесь и преломления обозначены как θ 1 и θ 2 соответственно. Величины n 1 , n 2 отражают скорость движения света в каждой среде. Они называются показателями преломления сред. Чем больше n, тем медленнее движется свет в данном материале. К примеру, в воде скорость света на 25% меньше, чем в воздухе, поэтому для нее показатель преломления равен 1,33 (для воздуха он равен 1).

Явление полного внутреннего отражения

Приводит к одному интересному результату, когда луч распространяется из среды с большим n. Рассмотрим подробнее, что при этом будет происходить с лучом. Выпишем формулу Снелла:

n 1 * sin (θ 1) = n 2 * sin (θ 2).

Будем считать, что n 1 >n 2 . В таком случае, чтобы равенство оставалось верным, θ 1 должен быть меньше, чем θ 2 . Этот вывод справедлив всегда, поскольку рассматриваются только углы от 0 o до 90 o , в пределах которых функция синуса постоянно возрастает. Таким образом, при выходе из более плотной оптической среды в менее плотную (n 1 >n 2) луч сильнее отклоняется от нормали.

Теперь будем увеличивать угол θ 1 . В итоге наступит момент, когда θ 2 будет равен 90 o . Возникает удивительное явление: испущенный из более плотной среды луч в ней и останется, то есть для него граница раздела двух прозрачных материалов станет непрозрачной.

Критический угол

Угол θ 1 , для которого θ 2 = 90 o , принято называть критическим для рассматриваемой пары сред. Любой луч, падающий на поверхность раздела под углом, большим чем критический, отражается полностью в первую среду. Для критического угла θ c можно записать выражение, которое непосредственно следует из формулы Снелла:

sin (θ c) = n 2 / n 1 .

Если второй средой является воздух, то это равенство упрощается до вида:

sin (θ c) = 1 / n 1 .

Например, критический угол для воды составляет:

θ c = arcsin (1 / 1,33) = 48,75 o .

Если нырнуть на дно бассейна и посмотреть вверх, то можно увидеть небо и бегущие по нему облака только над собственной головой, на всей остальной поверхности воды будут видны лишь стенки бассейна.

Из приведенных рассуждений ясно, что, в отличие от преломления, полное отражение не является обратимым явлением, оно происходит только при переходе из более плотной в менее плотную среду, но не наоборот.

Полное отражение в природе и технике

Пожалуй, самым распространенным в природе эффектом, который невозможен без полного отражения, является радуга. Цвета радуги - это результат дисперсии белого света в дождевых каплях. Однако когда лучи проходят внутри этих капель, то они испытывают либо однократное, либо двукратное внутреннее отражение. Именно поэтому радуга всегда появляется двойной.

Явление внутреннего полного отражения применяют в оптоволоконной технике. Благодаря оптическим волокнам удается передавать без потерь электромагнитные волны на большие расстояния.

  • 7. Ультразвук. Получение и регистрация ультразвука на основе обратного и прямого пьезоэлектрического эффекта.
  • 8. Взаимодействие ультразвука различной частоты и интенсивности с веществом. Применение ультразвука в медицине.
  • Электромагнитные колебания и волны.
  • 4.Шкала электромагнитных волн. Классификация частотных интервалов, принятая в медицине
  • 5.Биологическое действие электромагнитного излучения на организм. Электротравматизм.
  • 6.Диатермия. Увч-терапия. Индуктотермия. Микроволновая терапия.
  • 7.Глубина проникновения неионизирующих электромагнитных излучений в биологическую среду. Ее зависимость от частоты. Методы защиты от электромагнитных излучений.
  • Медицинская оптика
  • 1. Физическая природа света. Волновые свойства света. Длина световой волны. Физические и психофизические характеристики света.
  • 2. Отражение и преломление света. Полное внутреннее отражение. Волоконная оптика, ее применение в медицине.
  • 5. Разрешающая способность и предел разрешения микроскопа. Пути повышения разрешающей способности.
  • 6. Специальные методы микроскопии. Иммерсионный микроскоп. Микроскоп темного поля. Поляризационный микроскоп.
  • Квантовая физика.
  • 2. Линейчатый спектр излучения атомов. Его объяснение в теории н.Бора.
  • 3. Волновые свойства частиц. Гипотеза де-Бройля, ее экспериментальное обоснование.
  • 4. Электронный микроскоп: принцип действия; разрешающая способность, применение в медицинских исследованиях.
  • 5. Квантово-механическое объяснение структуры атомных и молекулярных спектров.
  • 6. Люминесценция, ее виды. Фотолюминесценция. Закон Стокса. Хемилюминесценция.
  • 7. Применение люминесценции в медико-биологических исследованиях.
  • 8. Фотоэлектрический эффект. Уравнение Эйнштейна для внешнего фотоэффекта. Фотодиод. Фотоэлектронный умножитель.
  • 9. Свойства лазерного излучения. Их связь с квантовой структурой излучения.
  • 10. Когерентное излучение. Принципы получения и восстановления голографических изображений.
  • 11. Принцип работы гелий-неонового лазера. Инверсная населенность энергетических уровней. Возникновение и развитие фотонных лавин.
  • 12. Применение лазеров в медицине.
  • 13. Электронный парамагнитный резонанс. Эпр в медицине.
  • 14. Ядерный магнитный резонанс. Использование ямр в медицине.
  • Ионизирующие излучения
  • 1. Рентгеновское излучение, его спектр. Тормозное и характеристическое излучение, их природа.
  • 3. Применение рентгеновского излучения в диагностике. Рентгеноскопия. Рентгенография. Флюорография. Компьютерная томография.
  • 4. Взаимодействие рентгеновского излучения с веществом: фотопоглощение, когерентное рассеяние, комптоновское рассеяние, образование пар. Вероятности этих процессов.
  • 5. Радиоактивность. Закон радиоактивного распада. Период полураспада. Единицы активности радиоактивных препаратов.
  • 6 Закон ослабления ионизирующих излучений. Коэффициент линейного ослабления. Толщина слоя половинного ослабления. Массовый коэффициент ослабления.
  • 8. Получение и применение радиоактивных препаратов для диагностики и лечения.
  • 9. Методы регистрации ионизирующего излучений: счетчик Гейгера, сцинтилляционный датчик, ионизационная камера.
  • 10. Дозиметрия. Понятие о поглощенной, экспозиционной и эквивалентной дозе и их мощности. Единицы их измерения. Внесистемная единица – рентген.
  • Биомеханика.
  • 1. Второй закон Ньютона. Защита организма от избыточных динамических нагрузок и травматизма.
  • 2. Виды деформации. Закон Гука. Коэффициент жесткости. Модуль упругости. Свойства костных тканей.
  • 3. Мышечные ткани. Строение и функции мышечного волокна. Преобразование энергии при мышечном сокращении. Кпд мышечного сокращения.
  • 4. Изотонический режим работы мышц. Статическая работа мышц.
  • 5. Общая характеристика системы кровообращения. Скорость движения крови в сосудах. Ударный объем крови. Работа и мощность сердца.
  • 6. Уравнение Пуазейля. Понятие о гидравлическом сопротивлении кровеносных сосудов и о способах воздействия на него.
  • 7. Законы движения жидкости. Уравнение неразрывности; его связь с особенностями системы капилляров. Уравнение Бернулли; его связь с кровоснабжением мозга и нижних конечностей.
  • 8. Ламинарное и турбулентное движение жидкости. Число Рейнольдса. Измерение артериального давления по методу Короткова.
  • 9. Уравнение Ньютона. Коэффициент вязкости. Кровь как неньютоновская жидкость. Вязкость крови в норме и при патологиях.
  • Биофизика цитомембран и электрогенеза
  • 1. Явление диффузии. Уравнение Фика.
  • 2. Строение и модели клеточных мембран
  • 3. Физические свойства биологических мембран
  • 4. Концентрационный элемент и уравнение Нернста.
  • 5. Ионный состав цитоплазмы и межклеточной жидкости. Проницаемость клеточной мембраны для различных ионов. Разность потенциалов на мембране клетки.
  • 6. Потенциал покоя клетки. Уравнение Гольдмана-Ходжкина-Катца
  • 7. Возбудимость клеток и тканей. Методы возбуждения. Закон «все или ничего».
  • 8. Потенциал действия: графический вид и характеристики, механизмы возникновения и развития.
  • 9. Потенциал-зависимые ионные каналы: строение, свойства, функционирование
  • 10. Механизм и скорость распространения потенциала действия по безмякотному нервному волокну.
  • 11. Механизм и скорость распространения потенциала действия по миелинизированному нервному волокну.
  • Биофизика рецепции.
  • 1. Классификация рецепторов.
  • 2. Строение рецепторов.
  • 3. Общие механизмы рецепции. Рецепторные потенциалы.
  • 4. Кодирование информации в органах чувств.
  • 5. Особенности светового и звукового восприятия. Закон Вебера-Фехнера.
  • 6. Основные характеристики слухового анализатора. Механизмы слуховой рецепции.
  • 7. Основные характеристики зрительного анализатора. Механизмы зрительной рецепции.
  • Биофизические аспекты экологии.
  • 1. Геомагнитное поле. Природа, биотропные характеристики, роль в жизнедеятельности биосистем.
  • 2. Физические факторы, имеющие экологическую значимость. Уровни естественного фона.
  • Элементы теории вероятности и математической статистики.
  • Свойства выборочного среднего
  • 2. Отражение и преломление света. Полное внутреннее отражение. Волоконная оптика, ее применение в медицине.

    Из теории электромагнитного поля, разработанной Дж. Максвеллом, следовало: электромагнитные волны распространяются со скоростью света - 300 000 км/с, что эти волны поперечны, так же как и световые волны. Максвелл предположил, что свет - это электромагнитная волна. В дальнейшем это предсказание нашло экспериментальное подтверждение.

    Как и электромагнитные волны, распространение света подчиняется тем же законам.

    Закон отражения. Угол падения равен углу отражения (α=β). Падающий луч АО, отраженный луч ОВ и перпендикуляр ОС, восставленный в точке падения, лежат в одной плоскости.

    Закон преломления. Луч падающий АО и преломленный ОВ лежат в одной плоскости с перпендикуляромCD, проведенным в точке падения луча к плоскости раздела двух сред. Отношение синусов угла падения а и угла преломления у постоянно для данных двух сред и называется показателем преломления второй среды по отношению к первой: .

    Законы отражения света учитываются при построении изображения предмета в зеркалах (плоском, вогнутом и выпуклом) и проявляются в зеркальном отражении в перископах, в прожекторах, автомобильных фарах и во многих других технических устройствах.Законы преломления света учитываются при построении изображения во всевозможных линзах, призмах и их совокупности (микроскоп, телескоп), а также в оптических приборах (бинокли, спектральные аппараты, фотоаппараты и проекционные аппараты). Если световой луч следует из оптически менее плотной среды (например, из воздуха;n возд. = 1) в оптически более плотную среду (например в стекло с показателем преломленияn ст. = 1,5), то на их границе произойдет частичное отражение и частичное преломление света.

    Отсюда следует, что , то есть синус угла преломленияgменьше, чем синус угла падения a, в 1,5 раза. А еслиsing

    Если же световой луч пустить из оптически более плотного стекла в оптически менее плотный воздух, то угол преломления окажется, наоборот, больше угла падения, g > a. Для обсуждаемого обратного хода луча закон преломления:

    следовательно, sing = 1,5sina; g >a

    Эта ситуация иллюстрируется схемой А на рисунке

    Если угол падения a увеличить до некоторого предельного значения a пр, то угол преломления g >aдостигает наибольшего значения g=90 0 . Преломленный луч скользит по границе раздела двух сред. При углах паденияa>a пр явление преломления не происходит, а вместо частичного отражения на границе раздела фаз происходитполное отражение света внутрь оптически более плотной среды, илиполное внутреннее отражение . Это оптическое явление составляет основу целого физико-технического направления, которое называетсяволоконная оптика.

    В медицине волоконная оптика нашла применение в эндоскопах - устройствах для осмотра внутренних полостей (например, желудка). Световод, представляющий собой жгут из большого числа тонких стеклянных волокон, помещенных в общую защитную оболочку, вводится в исследуемую полость. Часть волокон используется для организации освещения полости от источника света, расположенного вне тела пациента. Световод может использоваться и для передачи во внутреннюю полость лазерного излучения в лечебных целях.

    Полное внутреннее отражение происходит и в некоторых структурах сетчатки глаза.

    3. Оптическая система глаза. Недостатки зрения, методы их коррекции .

    Оптическая система глаза обеспечивает получение на сетчатке глаза уменьшенного действительного обратного (перевернутого) изображения. Если светопреломляющую систему глаза рассматривать как одну линзу, то общая оптическая сила этой системы получается как алгебраическая сумма следующих четырёх слагаемых:

    а) Роговица: D = +42,5 дптр

    б) Передняя камера: D от +2 до +4 дптр

    в) Хрусталик: D  const; от +19 до +33 дптр

    г) Стекловидное тело;D от –5 до –6 дптр.

    Благодаря тому, что оптическая сила хрусталика - величина переменная, суммарная оптическая сила глаза лежит в пределах от 49 до 73 дптр.

    Редуцированный глаз, как единая линза, обращён одной стороной - к воздуху, (абсолютный показатель преломления nвозд = 1), а другой - соприкасается с жидкостью, nж=1,336. Так что левый и правый фокусные расстояния не одинаковы; если переднее фокусное расстояние в среднем F1 = 17 мм, то заднее - F2 = 23 мм. Оптический центр системы - в глубине глаза на расстоянии 7,5 мм от наружной поверхности роговицы.

    Основной преломляющий элемент этой системы – роговица - имеет не сферическую, а более сложную форму преломляющих поверхностей, и это - хороший удар по сферической аберрации.

    Хрусталик меняет свою оптическую силу при сокращении или расслаблении цириальных мышц; этим достигается аккомодация глаза - его приспособление к фокусировке изображения на сетчатке как при рассматривании удалённых, так и близких предметов. Необходимое напряжение этих мышц даёт информацию о расстоянии до рассматриваемого предмета, даже если мы рассматриваем его одним глазом. Общее количество света, поступающее в глаз, регулируется радужной оболочкой. Она может быть разной по цвету, и потому люди бывают голубоглазые, кареглазые и т.п. Она управляется парой мышц. Имеется мышца, сужающая зрачки (циркулярная мышца), имеется мышца, его расширяющая (радиальная мышца).

    Рассмотрим далее особенности строения сетчатки. Её назначение - преобразовать оптическое изображение, полученное на её поверхности, в потоки электрических нервных импульсов, поступающих в мозг. Эти преобразования осуществляются клетками-фоторецепторами двух типов, получивших, в связи с особенностями своей формы, название колбочек и палочек.

    Колбочки-фоторецепторы дневного зрения. Обеспечивают цветовое зрение. Палочки - рецепторы сумеречного зрения. Каждый глаз человека содержит примерно 125*106 палочек и 5*106 колбочек, итого 130*106 фоторецепторов. Колбочки и палочки распределены по сетчатке очень неравномерно: на периферии размещены только палочки, чем ближе к области жёлтого пятна, тем больше встречается колбочек; в жёлтом пятне размещены только колбочки и их плотность (количество на единицу площади) очень велика, так что здесь эти клетки даже «изготавливаются» в малогабаритном варианте - они более мелкие, чем в других областях сетчатки.

    Область жёлтого пятна сетчатки - это область наилучшего зрения. Здесь мы фокусируем изображение предмета, если хотим разглядеть этот предмет особо тщательно.

    Плотность «упаковки» колбочек в жёлтом пятне определяет остроту нашего зрения. Плотность эта, в среднем, такова, что на отрезке длиной 5 мкм умещаются три колбочки. Для того, чтобы глаз различал две точки предмета, необходимо, чтобы между двумя засвеченными колбочками непременно находилась одна не засвеченная.

    Рефракция (преломление) света в глазе является нормальной, если изображение предмета, даваемое оптической системой глаза, ложится на наружные сегменты фоторецепторов, и при этом мышцы, управляющие кривизной хрусталика, расслаблены. Такая (нормальная) рефракция называетсяэмметропией.

    Отклонение от эмметропии – аметропия – встречается в двух разновидностях.Миопия (близорукость) – изображение фокусируется не на сетчатке, а перед ней, то есть преломление света в глазе происходит «слишком хорошо». Эта избыточность устранима рассеивающими очковыми линзами (оптическая сила отрицательная).

    Гиперметропия (дальнозоркость) – разновидность аметропии, при которой изображение формируется за сетчаткой. Чтобы вернуть изображение на сетчатку, надо «помочь» глазу собирающей очковой линзой (оптическая сила положительная). Говоря иначе, если оптическая сила глаза недостаточна, её можно увеличить дополнительным слагаемым - оптической силой собирающей очковой линзы.

    Появление контактных линз вместо классических очков поначалу воспринималось чуть ли не как революция.

    При обсуждении возможностей контактной линзы необходимо принять во внимание, что относительный показатель преломления на первой (по ходу луча) поверхности контактной линзы фактически равен абсолютному показателю преломления материала линзы, а на второй поверхности он равен отношению абсолютных показателей преломления роговицы и линзы.

    При внедрении любого изобретения рано или поздно обнаруживаются как достоинства, так и недостатки. Классические очки и контактные линзы, в их нынешнем виде, можно сопоставить следующим образом:

    Классические очки легко одевать и снимать, но не удобно носить;

    Контактные линзы удобно носить, но не удобно надевать и снимать.

    Лазерная коррекция зрения – это микрооперация на наружной поверхности роговицы. Напомним, что роговица - основной светопреломляющий элемент оптической системы глаза. Коррекция зрения достигается изменением кривизны наружной поверхности роговицы. Например, если сделать поверхность более плоской, (т.е. увеличить радиус кривизны R), то согласно формуле (4) оптическая силаDэтой поверхности уменьшится.

    Серьёзные проблемы со зрением возникают при отслоении сетчатки. В этих случаях нашёл применение метод закрепления сетчатки на предусмотренном природой месте с помощью фокусированного лазерного луча. Этот способ закрепления подобен точечной сварке металлов в технике. Сфокусированный луч создаёт малую зону повышенной температуры, в которой происходит «сварка» биологических тканей (в прямом и переносном смысле).

    Ретиналь - одна из двух основных компонент родопсина – это альдегид витамина А. С учётом того, что наружные сегменты фоторецепторов постоянно обновляются, полноценное обеспечение организма витамином А отвечает интересам поддержания зрительной системы в хорошем состоянии.

    4 . Оптический микроскоп. Ход лучей в микроскопе. Полезное увеличение микроскопа.

    Микроско́п - прибор, предназначенный для получения увеличенных изображений, а также измерения объектов или деталей структуры, невидимых или плохо видимых невооружённым глазом. Представляет собой совокупность линз.

    Совокупность технологий изготовления и практического использования микроскопов называют микроскопией., В микроскопе различают механическую и оптическую части. Механическая часть представлена штативом (состоящим из основания и тубусодержателя) и укрепленным на нем тубусом с револьвером для крепления и смены объективов. К механической части относятся также: предметный столик для препарата, приспособления для крепления конденсора и светофильтров, встроенные в штатив механизмы для грубого (макромеханизм, макровинт) и тонкого (микромеханизм, микровинт) перемещения предметного столика или тубусодержателя.

    Оптическая часть представлена объективами, окулярами и осветительной системой, которая в свою очередь состоит из расположенных под предметным столиком конденсора Аббе и встроенного осветителя с низковольтной лампой накаливания и трансформатором. Объективы ввинчиваются в револьвер, а соответствующий окуляр, через который наблюдают изображение, устанавливают с противоположной стороны тубуса.

    К механической части относится штатив, состоящий из основания и тубусодержателя. Основание служит опорой микроскопа и несет всю конструкцию штатива. В основании микроскопа находится также гнездо для зеркала или встроенный осветитель.

    предметный столик, служащий для размещения препаратов и горизонтальногоих перемещения;

    узел для крепления и вертикального светофильтров.

    Полезное увеличение – это видимое увеличение, при котором глаз наблюдателя будет полностью использовать разрешающую способность микроскопа, то есть разрешающая способность микроскопа будет такая же, как и разрешающая способность глаза Максимальное полезное увеличение микроскопа, т. е. увеличение, с которым выявляются детали рассматриваемого предмета, определяется по формуле

    где d1 – максимальная разрешающая способность человеческого глаза, равная 0,3 мм; d – максимальная разрешающая способность оптической системы.

    "

    (Волоконная оптика) Практическое применение явления полного отражения!

    Применение полного отражения света 1. При образовании радуги 2. Для направления света по изогнотому пути а) Волоконно – оптические линии связи (ВОЛС) б) Оптико – волоконные светильники в) Для исследования внутренних органов человека (эндоскопы)

    Схема образования радуги 1) сферическая капля, 2) внутреннее отражение, 3) первичная радуга, 4) преломление, 5) вторичная радуга, 6) входящий луч света, 7) ход лучей при формировании первичной радуги, 8) ход лучей при формировании вторичной радуги, 9) наблюдатель, 10-12) область формирования радуги.

    Для направления света по изогно - тому пути применяются оптические волокона, которые представляют собой тонкие (от нескольких микрометров до миллиметров) произвольно изогнутые нити из оптически прозрачного материала (стекло, кварц). Свет, попадающий на торец световода, может распространяться по нему на большие расстояния за счет полного внутреннего отражения от боковых поверхностей. Из оптических волокон изготавливают кабели для волоконно – оптической связи Волоконно – оптическая связь применяется для телефонной связи и высокоскоростного Интернета

    Оптико - волоконный кабель

    Оптико – волоконный кабель

    Преимущества ВОЛС Волоконно-оптические линии обладают рядом преимуществ перед проводными (медными) и радиорелейными системами связи: Малое затухание сигнала позволяет передавать информацию на значительно большее расстояние без использования усилителей. Высокая пропускная способность оптического волокна позволяет передавать информацию на высокой скорости, недостижимой для других систем связи. Высокая надёжность оптической среды: оптические волокна не окисляются, не намокают, не подвержены слабому электромагнитному воздействию. Информационная безопасность - информация по оптическому волокну передаётся «из точки в точку». Подключиться к волокну и считать передаваемую информацию, не повредив его, невозможно. Высокая защищённость от межволоконных влияний. Излучение в одном волокне совершенно не влияет на сигнал в соседнем волокне. Пожаро - и взрывобезопасность при измерении физических и химических параметров Малые габариты и масса Недостатки ВОЛС Относительная хрупкость оптического волокна. При сильном изгибании кабеля возможна поломка волокон или их замутнение из-за возникновения микротрещин. Сложная технология изготовления как самого волокна, так и компонентов ВОЛС. Сложность преобразования сигнала Относительная дороговизна оптического оконечного оборудования Замутнение волокна с течением времени вследствие старения.

    Оптико – волоконная подсветка

    Эндоскоп (от греч. ένδον - внутри и греч. σκοπέω - осмотр) - группа оптических приборов различного назначения. Различают медицинские и технические эндоскопы. Технические эндоскопы используются для осмотра труднодоступных полостей машин и оборудования при техническом обслуживании и оценке работоспособности (лопатки турбин, цилиндры двигателей внутреннего сгорания, оценка состояния трубопроводов и т. д.), кроме того, технические эндоскопы используются в системах безопасности для досмотра скрытых полостей (в том числе для досмотра бензобаков на таможне Медицинские эндоскопы используются в медицине для исследования и лечения полых внутренних органов человека (пищевод, желудок, бронхи, мочеиспускательный канал, мочевой пузырь, женские репродуктивные органы, почки, органы слуха), а также брюшной и других полостей тела.

    Спасибо за внимание!)

    Некоторые законы физики трудно представить без использования наглядных пособий. Это не касается привычного всем света, попадающего на различные объекты. Так на границе, разделяющей две среды, происходит смена направления световых лучей в том случае, если эта граница намного превышает При света возникает, когда часть его энергии возвращается в первую среду. Если часть лучей проникает в другую среду, то происходит их преломление. В физике энергии, попадающий на границу двух различных сред, называется падающим, а тот, что от нее возвращается в первую среду, - отраженным. Именно взаимное расположение данных лучей определяет законы отражения и преломления света.

    Термины

    Угол между падающим лучом и перпендикулярной линией к границе раздела двух сред, восстановленной к точке падения потока световой энергии, называется Существует еще один важный показатель. Это угол отражения. Он возникает между отраженным лучом и перпендикулярной линией, восстановленной к точке его падения. Свет может распространяться прямолинейно исключительно в однородной среде. Разные среды по-разному поглощают и отражают излучение света. Коэффициентом отражения называют величину, характеризующую отражательную способность вещества. Он показывает, сколько принесенной световым излучением на поверхность среды энергии составит та, которая унесется от нее отраженным излучением. Данный коэффициент зависит от целого множества факторов, одними из самых важных являются угол падения и состав излучения. Полное отражение света происходит тогда, когда он падает на предметы или вещества с отражающей поверхностью. Так, например, это случается при попадании лучей на тонкую пленку серебра и жидкой ртути, нанесенных на стекло. Полное отражение света на практике встречается довольно часто.

    Законы

    Законы отражения и преломления света были сформулированы Евклидом еще в ІІІ в. до н. э. Все они были установлены экспериментально и легко подтверждаются чисто геометрическим принципом Гюйгенса. Согласно ему любая точка среды, до которой доходит возмущение, представляет собой источник вторичных волн.

    Первый света: падающий и отражающий луч, а также перпендикулярная линия к границе раздела сред, восстановленная в точке падения светового луча, расположены в одной плоскости. На отражательную поверхность падает плоская волна, волновые поверхности которой являются полосками.

    Другой закон гласит о том, что угол отражения света равен углу падения. Это происходит потому, что они имеют взаимно перпендикулярные стороны. Исходя из принципов равенства треугольников, следует, что угол падения равен углу отражения. Можно легко доказать, что они лежат в одной плоскости с перпендикулярной линией, восстановленной к границе раздела сред в точке падения луча. Эти важнейшие законы справедливы и для обратного хода света. Вследствие обратимости энергии луч, распространяющийся по пути отраженного, будет отражаться по пути падающего.

    Свойства отражающих тел

    Подавляющее большинство объектов только отражают падающее на них световое излучение. При этом они не являются источником света. Хорошо освещенные тела отлично видны с любых сторон, поскольку излучение от их поверхности отражается и рассеивается в разных направлениях. Это явление называются диффузным (рассеянным) отражением. Оно происходит при попадании света на любые шероховатые поверхности. Для определения пути отраженного от тела луча в точке его падения проводится плоскость, касающаяся поверхности. Затем по отношению к ней строят углы падения лучей и отражения.

    Диффузное отражение

    Только благодаря существованию рассеянного (диффузного) отражения световой энергии мы различаем предметы, не способные испускать свет. Любое тело будет абсолютно невидимым для нас, если рассеивание лучей будет равно нулю.

    Диффузное отражение световой энергии не вызывает у человека неприятных ощущений в глазах. Это происходит от того, что не весь свет возвращается в первоначальную среду. Так от снега отражается около 85% излучения, от белой бумаги - 75%, ну а от велюра черного цвета - всего 0,5%. При отражении света от различных шероховатых поверхностей лучи направляются хаотично по отношению друг к другу. В зависимости от того, в какой степени поверхности отражают световые лучи, их называют матовыми или зеркальными. Но все-таки эти понятия являются относительными. Одни и те же поверхности могут быть зеркальными и матовыми при различной длине волны падающего света. Поверхность, которая равномерно рассеивает лучи в разные стороны, считается абсолютно матовой. Хотя в природе таких объектов практически нет, к ним очень близки неглазурованный фарфор, снег, чертежная бумага.

    Зеркальное отражение

    Зеркальное отражение лучей света отличается от других видов тем, что при падении пучков энергии на гладкую поверхность под определенным углом они отражаются в одном направлении. Это явление знакомо всем, кто когда-то пользовался зеркалом под лучами света. В этом случае оно является отражающей поверхностью. К этому разряду относятся и другие тела. К зеркальным (отражающим) поверхностям можно отнести все оптически гладкие объекты, если размеры неоднородностей и неровностей на них составляют меньше 1 мкм (не превышают величину длины волны света). Для всех таких поверхностей действительны законы отражения света.

    Отражение света от разных зеркальных поверхностей

    В технике нередко используются зеркала с изогнутой отражающей поверхностью (сферические зеркала). Такие объекты представляют собой тела, имеющие форму сферического сегмента. Параллельность лучей в случае отражения света от таких поверхностей сильно нарушается. При этом существует два вида таких зеркал:

    Вогнутые - отражают свет от внутренней поверхности сегмента сферы, их называют собирающими, поскольку параллельные лучи света после отражения от них собираются в одной точке;

    Выпуклые - отражают свет от наружной поверхности, при этом параллельные лучи рассеиваются в стороны, именно поэтому выпуклые зеркала называют рассеивающими.

    Варианты отражения световых лучей

    Луч, падающий практически параллельно поверхности, только немного касается ее, а далее отражается под сильно тупым углом. Затем он продолжает путь по очень низкой траектории, максимально расположенной к поверхности. Луч, падающий практически отвесно, отражается под острым углом. При этом направление уже отраженного луча будет близко к пути падающего луча, что полностью соответствует физическим законам.

    Преломление света

    Отражение тесно связано с иными явлениями геометрической оптики, такими как преломление и полное внутреннее отражение. Зачастую свет проходит через границу между двумя средами. Преломлением света называют изменение направления оптического излучения. Оно происходит при прохождении его из одной среды в другую. Преломление света имеет две закономерности:

    Луч, прошедший через границу между средами, расположен в плоскости, которая проходит через перпендикуляр к поверхности и падающий луч;

    Угол падения и преломления связаны.

    Преломление всегда сопровождается отражением света. Сумма энергий отраженного и преломленного пучков лучей равна энергии падающего луча. Их относительная интенсивность зависит от в падающем пучке и угла падения. На законах преломления света основывается устройство многих оптических приборов.