Вопросы и задания для самоконтроля. Причины колебания численности популяций Периодические колебания численности особей популяции

Изучение и вскрытие причин, определяющих колебания численности животных в природе, является одной из важнейших задач современной зоологии. Эти изменения определяют динамику биомассы вида, а следовательно, и степени участия вида в работе биогеоценозов. Первично количественные изменения числа особей в популяциях представляют собой итог воздействия, факторов биотического и абиотического характера. При этом надо различать истинные изменения численности и временные, которые могут быть вызваны миграциями животных из данных, биотопов в связи с неблагоприятными условиями (засуха, наводнение) или различием периодов активности разных возрастных и половых групп. Наблюдения показывают, что как биотические, так и абиотические факторы оказывают особенно массированное воздействие на численность наземных позвоночных, если они связаны с антропогенным воздействием.

Периодические колебания численности

Периодические колебания численности населения ящериц в основном связаны с размножением и возрастной смертностью, т. е. являются сезонными. В ряде случаев количественные флуктуации численности в популяциях могут быть вызваны периодичностью вспышек кормовых видов и периодических изменений "давления" хищников.

Известно, что всякая популяция имеет свою специфическую ритмику численности (как по полу, так и по возрасту). К сожалению, имеются лишь отрывочные данные по ритмике численности особей разного пола прыткой ящерицы по сезонам. В. К. Жаркова (1973а) исходя из факта, что количественные соотношения разных возрастных групп в популяции иные, на основе имеющегося у нее материала определяет различие в возрастной смертности самцов и самок (табл. 57).

Как видно из табл. 57, за первый и второй годы жизни среди ящериц Мещерской низменности самцов погибает почти в два раза больше, чем самок. Лишь на третьем году жизни резко увеличивается процент гибели самок. Такой ход динамики численности приводит к преобладанию в популяции молодых самок. В более старших возрастных группах, наоборот, происходит интенсивная смертность самой, и соотношение полов выравнивается. Возможно, именно такая дифференцированная смертность объясняет несколько большую численность самок в некоторых природных популяциях.

Ритмика колебаний численности особей разного пола подчиняется тем же общим закономерностям, которые действуют при возрастных колебаниях, с некоторыми поправками для разных полов. В настоящее время можно построить модель динамики численности населения прыткой ящерицы, определяемую возрастной смертностью (рис. 92). Как показано в гл. XV, темп смертности животных на протяжении их жизни оказывается различным. Проследим динамику численности одного поколения. Принимая данные табл. 62 (гл. XV) за исходные, получаем, что наибольшая численность в популяции достигается в момент откладки яиц (отложенное оплодотворенное яйцо - это уже особь) и выхода молодых. Учитывая большую смертность среди новорожденных (50%), которые гибнут до зимовки и после нее, к следующей весне в живых останется всего 25% от родившихся этого поколения. На второй год погибнет около 33% от достигших возраста в один год. На третий год жизни смертность, видимо, несколько снижается, но на четвертом и пятом годах жизни достигает соответственно 50 и 100% от числа доживших до этого возраста особей.

Таблица 57

Возрастная смертность самцов и самок (разница в числе особей предыдущей и последующей генерации *) прыткой ящерицы в Мещерской низменности [по В. К. Жарковой (1973а) за 1965 - 1969 гг.]

* (Под генерацией в данном случае имеется в виду потомство, появившееся на свет в один сезон размножения. )

Суммарная картина сезонных колебаний численности в популяции прыткой ящерицы будет намного сложнее, так как в каждый момент времени в популяции будут находиться особи пяти поколений, каждое из которых имеет свой темп смертности. В результате модель численности популяции прыткой ящерицы будет выглядеть следующим образом (рис. 93). Необходимо подчеркнуть, что в этой модели учтены только сезонная циклика; на нее в природе практически всегда накладывается апериодическая цикличность.

Таблица 58

Динамика плотности населения (экз./1000 м 2) прыткой ящерицы за 4 года в разных биотопах (Жаркова, 1973б)

Безусловно, что в разных частях ареала динамика изменений сезонной численности популяции должна быть различной. Многолетняя динамика численности представляет собой итог сезонных динамик. Но это не простая сумма, а как бы наложение друг на друга различных часто противоположно направленных явлений, обусловленных различными факторами. Говоря о сочетании факторов, имеются в виду как биотические, так и абиотические факторы, действующие на природные популяции. Проиллюстрируем колебания численности в разные годы на примере пяти групп ящериц в северной лесостепи Европейской части СССР (табл. 58).

Как видно, каждому биотопу присуща определенная динамика колебаний численности. Так, на склонах реки численность ящериц за эти четыре года постоянно увеличивается, в то (время как в сосновых посадках ящерица отсутствует, затем резкий "всплеск" численности с последующим сокращением численности населения. В смешанном лесу, на разнотравном лугу происходят изменения численности другого порядка.

Несомненно, колебания численности в популяциях прыткой ящерицы, связанные с действием биотических факторов, могут быть вызваны либо периодическими вспышками численности основных кормов (см. гл. VI), либо периодичностью давления пресса хищников, либо, наконец, резкими вспышками численности конкурирующих видов.

Увеличение численности кормовых видов, безусловно, приводит к некоторому увеличению численности популяции (при условии отсутствия пресса хищников и конкурирующих видов), падение же численности пищевых видов в некоторых случаях приводит к тому, что взрослые особи начинают пожирать молодых (каннибализм), тем самым сокращая численность популяции. В некоторых случаях происходит ложное сокращение численности популяции в результате миграции. Такие миграции могут быть вызваны увеличением численности популяций конкурирующих видов или резким спадом численности кормовых видов. Иногда популяции мигрируют полностью и переходят в биотопы, совершенно ей не свойственные, в стадии переживания (см. гл. IX). Важно добавить, что кормовые виды и виды-конкуренты, видимо, не имеют столь же существенного значения в регуляции численного состава популяций прыткой ящерицы (Лукина, 1966; Тертышников, 1972а, б; и др.)

Немаловажную роль в колебаниях численности популяций играют хищники. Резкое увеличение или падение численности хищников неизбежно приводит к сокращениям или увеличениям численности популяций прыткой ящерицы. В то же время значение хищников как регуляторов численности популяций прыткой ящерицы крайне недостаточно изучено. По расчетам М. Ф. Тертышникова, в Ставропольском крае, на стационарном участке, расположенном в верховьях р. Томузловки, за сезон гибнет 37,2% общей биомассы популяции ящерицы в результате воздействия на них учтенных фоновых врагов из позвоночных. В этом районе пресс хищников является дополнительной причиной, задерживающей рост численности в популяции. "Давление" хищников, несомненно, различно и в разных популяциях. Об этом косвенно свидетельствуют данные в гл. XIII о различной доле особей с регенерированными хвостами (т. е. особей, подвергавшихся нападению хищников и удачно их избежавших). Напомним лишь, что в некоторых популяциях больше половины взрослых особей несут на себе следы таких нападений.

В целом можно сказать, что периодические колебания, видимо, не вызывают изменений численности популяций прыткой ящерицы более чем на один порядок.

Апериодические колебания численности

Факторы, способствующие массовому размножению ящериц популяции, и факторы, определяющие наступление следующего за ним периода депрессии численности, могут быть вызваны апериодическими явлениями. Такими явлениями могут быть катастрофические изменения биогеоценозов в результате пожаров, наводнений, засухи, сильных морозов в малоснежные зимы и прочие явления, прямо или косвенно благоприятствующие или, наоборот, препятствующие росту численности. Колебания численности могут быть связаны и с длительными изменениями природных условий, вызванными деятельностью человека (опустынивание, засоление больших территорий и т. п., или длительными изменениями климата типа ледниковых периодов. Иногда такого рода причины могут приводить к массовой гибели животных, тем более что прыткая ящерица, являясь пойкилотермным животным, весьма зависит от климатических условий.

По мнению многих авторов (Терентьев, 1946; Лукина, 1966б; Гаранин, 1971, Тертышников, 1972б; Жаркова, 1973а; и др.), основное сокращение численности ящериц происходит в основном за счет гибели яиц. Если принять все отложенные яйца в популяции за 100%, то к моменту выхода молодых гибнет от 40 до 60%. Этот процент резко увеличивается особенно в дождливое и холодное лето (Гаранин, 1971). Другой критический момент, связанный с физическими факторами среды, в жизни прыткой ящерицы - осень с ранними заморозками. Именно в этот период времени, когда животные собираются уходить на зимнюю спячку, такого рода явления наиболее опасны (особенно для молодых этого года рождения, которые позднее уходят на зимовку).

Наконец, последним критическим моментом, влияющим на численность популяций, является зимовка. Численность особенно резко падает в морозные малоснежные зимы (Гаранин, 1971; Тертышников, 1972б). Обычно взрослые ящерицы зимуют в своих норах или в старых норах грызунов (см. гл. V). Если в открытых биотопах норы большинства грызунов глубокие и как зимние убежища являются надежными (так как температура в них не опускается ниже 0°), то этого нельзя обычно сказать о норах, вырытых самими ящерицами, обычно неглубоких, а также о трещинах и щелях, где часто в почве зимуют молодые особи. В малоснежные холодные зимы, когда почва недостаточно покрыта снегом, а следовательно нарушается температурный режим в зимних норах, многие животные, зимующие в таких норах, погибают. Поэтому значительно более надежными для выживаемости ящериц зимой являются лесные биотопы, лесополосы, придорожные канавы, овраги и т. п., так как именно в этих местах скапливается значительное количество снега, утепляющего почву. Здесь массовая гибель животных в морозные зимы может наступить лишь в исключительных случаях. В. И. Гаранин (1971) приводит такой пример. Малоснежная суровая зима 1968 г. в Волжко-Камском заповеднике привела к резкому сокращению численности ящериц. Именно во время зимовки происходит резкое сокращение численности среди молодых животных в популяции. Так, М. Ф. Тертышников показал, что отход яиц и смертность сеголетков в первую зимовку в Ставропольской возвышенности составляет 25,7%.

Наиболее существенные изменения среды обитания, носящие катастрофический характер, приводят к резкому снижению ее численности. К типичным явлениям такого порядка можно отнести пожары, наводнения и засухи. По сведениям В. К. Жарковой (1973а), в 1967 г. после сильных дождей в районе Окского заповедника реки вышли из берегов и затопили биотопы, занимаемые прыткой ящерицей. Так, в пойменном лугу и в пойменных посадках сосны на р. Выше в этот год наблюдалось резкое сокращение численности прыткой ящерицы: на пойменном лугу численность ящериц в среднем сократилась в 4 раза по сравнению с 1966 г., а в пойменных посадках в 2,5 раза. Надо заметить, что при этом могут совершенно исчезнуть отдельные демы или целые их группы. Но популяции в большинстве случаев сохраняются, хотя и могут при этом достигать минимальных численностей, достаточных все же для дальнейшего существования.

Наиболее существенные изменения среды, связанные с длительным изменением природных условий, в настоящее время чаще бывают связаны с антропогенными воздействиями. Например, одной из причин гибели прытких ящериц является создание новых водохранилищ на пойменных землях. На берегах Куйбышевского водохранилища Гаранин (1971) отмечает резкое сокращение численности рептилий и в том числе прыткой ящерицы. В то же время на некоторых островах водохранилища сократившиеся сначала численно популяции затем заметно увеличились.

Более серьезным и распространенным фактором, отрицательно влияющим на численность ящериц, является неумеренное использование ядохимикатов в сельском и лесном хозяйстве. Существует строгая корреляция между обработкой ядохимикатами участков Мещеры и населенностью их ящерицами (Жаркова, 1973б). В этом районе не заселенные прыткой ящерицей, но подходящие для них биотопы составляют от 32 до 49% обследованной территории. Есть все основания согласиться с предостережением Е. Рене (Rene, 1969) и К. Корбетта (Corbett, 1969) об опасности вымирания прыткой ящерицы в развитых промышленных районах в связи с полным антропогенным разрушением естественных биотопов.

Есть и другая сторона антропогенного влияния на численность прыткой ящерицы. Наблюдения, проведенные в 1970 - 1974 гг. в разных частях ареала прыткой ящерицы, показывают, что она в некоторых районах становится "антропогенным видом". Широкая способность этого вида приспосабливаться к антропогенным биотопам (см. табл. 5) несомненно позволит этому виду не только "не сокращать свою численность при контактах с цивилизацией, но, возможно, в некоторых частях своего ареала даже увеличивать ее. Пока же в результате активного антропогенного воздействия численность прытких ящериц резко сокращается на Ставропольской возвышенности (Тертышников, 1972в), в Калужской обл. (Стрельцов), во многих районах Сибири (Баранов и др., сообщ.), Латвийской (Бахарев, 1971) и Эстонской ССР (Вельдре, личное сообщ.), а в окрестностях г. Махачкала (Хонякина, Кутузова, личн. сообщ.) прыткая ящерица исчезла вообще.

Таким образом, в настоящее время лишь при очень резких изменениях среды, обычно, связанных с разрушением биоценозов под воздействием человека, численность популяций сокращается ниже критического уровня, за которым следует вымирание популяции.

Периодические (сезонные и годовые) колебания численности прыткой ящерицы, видимо, не превышают одного порядка величин, тогда как апериодические колебания оказываются часто более значительными.

Когда популяция прекращает расти, ее плотность обнаруживает тенденцию к флуктуациям относительно верхнего асимптотического уровня роста. Такие флуктуации могут возникать либо в результате изменений физической среды, вследствие чего повышается или снижается верхний предел численности, либо по причине внутрипопуляци- онных взаимодействий, либо, наконец, в результате взаимодействия с соседними популяциями. После того как верхний предел численности популяции (К) окажется достигнутым, плотность может некоторое время оставаться на этом уровне или сразу резко упасть (рис. 8.7, кривая 1 ). Это падение окажется еще резче, если сопротивление среды увеличивается не постепенно, по мере роста популяции, а проявляется внезапно (рис. 8.7, кривая 2). В таком случае популяция будет реализовывать биотический потенциал.

Рис.

Однако экспоненциальный рост не может происходить долго. Когда экспонента достигает «парадоксальной точки» стремления к бесконечности, как правило, происходит качественный скачок - быстрое увеличение численности сменяется массовой гибелью особей. Пример подобных флуктуаций - вспышка размножения насекомых, сменяемая массовой их гибелью, а также размножение и отмирание клеток водорослей (цветение водоемов).

Возможна и такая ситуация, при которой численность популяции перескакивает через предельный уровень (рис. 8.7, кривые 3 , 4). Подобное, в частности, наблюдается при вселении животных туда, где их раньше не было (например, зарыбление новых прудов). В этом случае питательные вещества и другие необходимые для развития факторы накоплены еще до начала роста популяции, а механизмы регуляции численности еще не действуют.

Существует два основных типа колебаний численности популяций (рис. 8.8).

Рис. 8.8.

При первом типе периодические нарушения среды, такие как пожары, наводнения, ураганы и засухи, часто приводят к катастрофической, не зависящей от плотности, смертности. Так, численность популяции однолетних растений и насекомых обычно быстро растет весной и летом, а с наступлением холодной погоды резко сокращается. Популяции, рост которых дает регулярные или случайные всплески, называются оппортунистическими (рис. 8.8, график /). Другие популяции, так называемые равновесные (свойственные многим позвоночным), обычно находятся в состоянии, близком к равновесию с ресурсами, а значения их плотности гораздо более устойчивы (рис. 8.8, график 2).

Два выделенных типа популяций представляют собой только крайние точки континуума, однако при сравнении разных популяций подобное разделение часто оказывается полезным. Значение противопоставления оппортунистических популяций равновесным заключается в том, что действующие на них, зависящие и не зависящие от плотности факторы, так же как совершающиеся при этом события, по-разному влияют на естественный отбор и на сами популяции. Р. Мак-Артур и Э. Уилсон (1967) назвали эти противоположные типы отбора r-отбором и К-отбором в соответствии с двумя параметрами логистического уравнения. Некоторые характерные признаки г-отбора и /Г-отбора приведены в табл. 8.1.

Конечно, мир не окрашен только в черное и белое. Ни один из видов не подвержен только r-отбору или только АГ-отбору; каждый должен достигнуть определенного компромисса между этими двумя крайними вариантами. В самом деле, о каждом конкретном организме можно говорить как о «r-стратеге» или «/^-стратеге» только при сравнении с другими организмами, и поэтому все утверждения о двух выделенных типах отбора носят относительный характер. Однако нельзя

Основные признаки / -отбора и А"-отбора

Таблица 8.1

Параметр популяции, направление действия отбора

Размеры особей

Продолжительность

Короткая, обычно менее года

Долгая, обычно более года

Смертность

Обычно катастрофическая, ненаправленная, не зависящая от плотности

Более направленная, зависящая от плотности

Кривая выживания

Обычно третьего типа

Обычно первого и второго типов

Размер популяций

Изменчивый во времени, не равновесный, ниже предельной емкости среды; экологический вакуум; ежегодное заселение

Более постоянный во времени, равновесный, близкий к предельной емкости среды; повторные заселения не являются необходимыми

Конкуренция

Изменчивая, часто слабая

Обычно острая

Отбор благоприятствует

Быстрому развитию, высокой скорости увеличения популяции, раннему размножению, единственному в течение жизни акту размножения, большому числу мелких потомков

Более медленному развитию, большой конкурентоспособности, более позднему размножению, повторяющимся в течение жизни актам размножения, меньшему числу более крупных потомков

отрицать, что существуют две противоположные стратегии размножения, к которым популяции прибегают в зависимости от колебаний емкости среды. На рисунке 8.9 показано, как в эволюции мог закрепиться механизм т-отбора или А"-отбора: в А"-селективных средах отбор способствует становлению механизмов, компенсирующих колебания среды, а в /*-селективных средах популяция «совершенствуется» в способности быстро заселять среду в благоприятное время года.

Во временном отношении колебания численности популяции бывают непериодическими и периодическими. Последние можно разделить на колебания с периодом в несколько лет и сезонные колебания. Непериодические флуктуации носят непредвиденный характер.


Рис. 8.9.

В Тихом океане, особенно в районе Большого барьерного рифа к северо-востоку от Австралии, с 1966 г. наблюдается увеличение численности морской звезды терновый венец (Acanthaster planci). Данный вид, будучи ранее малочисленным (менее одной особи на 1 м 2), достиг к началу 1970-х гг. плотности 1 особь на 1 м 2 . Морская звезда наносит большой вред коралловым рифам, так как питается полипами, составляющими их живую часть. Она «очистила» 40-киломе- тровую полосу рифов у острова Гуам менее чем за три года. Ни одна из гипотез, предложенных для объяснения внезапного увеличения численности морской звезды (исчезновение одного из ее врагов - брюхоногого моллюска тритоний рог (Charonia triton is), которого добывают из-за раковин, содержащих перламутр; увеличение содержания в морской воде ДДТ и в связи с этим нарушение естественного равновесия; влияние радиоактивных осадков), не может считаться удовлетворительной.

Пример периодических колебаний численности с периодом в несколько лет дают популяции некоторых арктических млекопитающих и птиц. У зайца-беляка и рыси период колебаний численности равен 9,6 года (рис. 8.10).

Как видно из рисунка, максимум численности зайца по сравнению с численностью рыси обычно сдвинут на один-два года назад. Это вполне понятно: рысь питается зайцами, а потому колебания ее численности должны быть связаны с колебанием численности ее добычи.


Рис. 8.10. Периодические колебания популяций зайца-беляка (график 1) и рыси (график 2), установленные по числу шкурок, заготовленных «Компанией Гудзонова пролива»

Циклические изменения численности со средним периодом в четыре года характерны для обитателей тундры: полярной совы, песца, а также лемминга. По мнению многих ученых, периодичность 9,6-лет- них циклов у зайца-беляка и рыси определяется явлениями, происходящими в космосе, и так или иначе связана с солнечными циклами. Подобная зависимость отмечается, например, у атлантического канадского лосося, максимум численности которого наблюдается через каждые 9- 10 лет.

Причины, вызывающие другие периодические флуктуации численности, хорошо известны. У берегов Перу наблюдается трансгрессия теплых вод к югу, известная под названием El Nino. Приблизительно раз в семь лет теплые воды вытесняют с поверхности холодные. Температура воды быстро поднимается на 5 °С, изменяется соленость, гибнет планктон, насыщая воду продуктами распада. В результате погибает рыба, а за ней морские птицы.

Случаи сезонных изменений численности популяций хорошо известны всем. Тучи комаров, большое количество населяющих леса птиц обычно наблюдаются в определенный период года. В другие сезоны популяции этих видов могут практически исчезать.

Нашествия полевок, мышей, саранчи известны человечеству с библейских времен. Еще Аристотель оставил описание "расцвета и падения" мышиной популяции. Он отмечал, что нашествие грызунов было бедствием, сравнимым с чумой. Они чудовищно размножились, уничтожили урожай и свою собственную "пищевую базу" и в конце концов исчезли, как сквозь землю провалились. В Древней Руси годы массового размножения грызунов называли годами "мышиной напасти", о них даже упоминается в летописях. Колебания численности, особенно хорошо заметные у мышевидных грызунов и других видов с коротким жизненным циклом и быстрой сменой поколений, характерны для всех популяций растений и животных ( рис. 23).

У быстроразмножающихся видов наблюдается периодическое чередование подъемов и спадов численности - популяционные циклы. Так, циклы полевок, леммингов и других мышевидных грызунов длятся обычно 4 года. За этот срок количество животных возрастает от ничтожного до максимального, затем падает почти до нуля и начинается новый цикл. Каковы причины такой периодичности? Трудно дать исчерпывающее объяснение. По-видимому, немалую роль в этом процессе играют хищники, численность которых колеблется пропорционально росту и убыли популяции грызунов. Например, чем больше полевок, тем больше птенцов выводят совы. Пустельги, луни, канюки и другие постоянно обитающие в одном месте птицы в период расцвета мышиной популяции выкармливают всех вылупившихся птенцов, а в голодный год много птенцов гибнет. Однако хищничество - только одна из многих причин колебания численности. Хищник съездает не более того, что ему необходимо, и бессилен справиться с полчищами животных в период их массового размножения. Резкие колебания численности грызунов могут быть связаны и со вспышками эпидемий.

Причины популяционных волн в одних случаях менее известны, в других - более изучены и объяснимы. Так, хорошо известно, что урожай еловых шишек повышается после теплого сухого лета, а это, в свою очередь, положительно сказывается на росте популяции белок.

Резкие непериодические падения численности возникают в результате засухи, пожара, наводнения и других природных катастроф. При этом всегда неизбежно создаются исключительно благоприятные условия для развития одних организмов, неблагоприятные - для других. Например, на месте лесных пожаров буйно разрастается иван-чай. Его численность увеличивается на протяжении нескольких лет, затем это растение постепенно вытесняется другими травами, кустарниками, деревьями.

Резкие вспышки численности видов наблюдаются при их попадании в новые подходящие для жизни условия. Достаточно привести пример последствий расселения ондатры в Европе и в СССР, завоевании кроликами Австралии. Однако через несколько поколений новый для данного биогеоценоза вид становится жертвой новых для него хищников, новых болезней, к которым не выработан иммунитет. В результате вслед за небывалым подъемом численности неизбежно наступает период ее падения. Так было в СССР с ондатрой в 50-60-х годах, так было в 1987-1988 гг. на озере Севан с акклиматизированным здесь сигом.

В природе численность популяций испытывает колебания. Так, численность отдельных популяций насекомых и мелких растений может достигать сотен тысяч и миллион особей. Напротив, популяции животных и растений могут быть сравнительно небольшие по численности.

Срабатывание регуляторных механизмов способно вызывать колебания численности популяций. Можно выделить три основных типа популяционной динамики численности: стабильный, цикличный и скачкообразный (взрывной).

Любая популяция не может состоять из меньшего числа индивидов, чем это необходимо для обеспечения стабильной реализации этой среды и устойчивости популяции к факторам внешней среды - принцип минимального размера популяции.

Минимальная численность популяции специфична для разных видов. Выход за пределы минимума ведет популяцию к гибели. Так, дальнейшее скрещивание тигра на Дальнем Востоке, неизбежно приведет к вымиранию из-за того, что оставшиеся единицы, не находя с достаточной частотой партнеров для размножения, вымрут на протяжении немногих поколений. Это же грозит и редким растениям (орхидея «венерин башмачок» и др.).

Существует и популяционный максимум. 1975 г., Odum, - правило популяционного максимума:

Регуляция плотности популяции осуществляется, когда полностью используются ресурсы энергии и пространства. Дальнейшее увеличение плотности популяции ведет к снижению обеспеченности пищей и, следовательно, к снижению плодовитости.

Различают непериодические (редко наблюдаемые) и периодические (постоянные) колебания численности естественных популяций.

Стабильный тип отличается небольшим размахом колебаний (иногда численность увеличивается в несколько раз). Свойствен видам с хорошо выраженными механизмами популяционного гомеостаза, высокой выживаемостью, низкой плодовитостью, большой продолжительностью жизни, сложной возрастной структурой, развитой заботой о потомстве. Целый комплекс эффективно работающих регуляторных механизмов держит такие популяции в определённых пределах плотности.

Периодические (циклические) колебания численности популяций. Совершаются обычно в течение одного сезона или нескольких лет. Циклические изменения с подъемом численности в среднем через 4 года зарегистрирована у животных, обитающих в тундре - леммингов, полярной совы, песца. Сезонные колебания численности характерны и для многих насекомых, мышевидных грызунов, птиц, мелких водных организмов.

В простых по структуре экосистемах (агробиогеоценозы, пустынные, полупустын­ные и тундровые экосистемы) сообщество ор­ганизмов подвержено сильному воздействию физических стрессов. В таких биогеоценозах на численность популяций в значительной степени влияют особенности погоды, водные и воздушные течения, химизм среды и степень ее загряз­нения. В естественных же биогеоценозах со сложной структурой и богатым видовым разно­образием, состоящим из большого количества популяций, колебания численности в основном контролируются биотическими факторами. По­этому при изучении причин, вызывающих колебания численности той или иной популяции, не­обходимо иметь четкое представление, как о независимых , так и о зависимых от плотности факторах.



К первым относятся факторы, действующие на популяцию постоянно. Это абиотические и прежде всего климатические факторы смертно­сти. Неблагоприятная погода может вызвать в популяции гибель особей, которые еще не до­стигли устойчивой фазы развития. Хорошо из­вестно влияние температуры, освещенности, влажности на продолжительность жизни, плодо­витость, смертность и другие свойства организ­мов. Причем на пойкилотермных животных кли­матические факторы оказывают непосредст­венное и более сильное воздействие, чем на гомойотермных. Последние, обладая совер­шенными физиологическими механизмами, ста­новятся относительно независимыми от внешней среды. Сокращение численности популяций при резких понижениях температуры у насекомых более заметно, чем у птиц и особенно у мле­копитающих.

Действие климатических факторов не всегда проявляется сразу, немедленно. Например, в тайге благоприятные погодные условия приво­дят к высокому урожаю семян через год, а подъем численности популяции животных при обильном корме наблюдается лишь через два года. При этом погодные условия действуют независимо от плотности популяций.

Независимо от плотности проявляют себя и другие факторы. Так, количество дупел в де­ревьях в том или ином лесу обусловливает численность дуплогнездников. Само собой ра­зумеется, что количество дупел никак не зави­сит от плотности популяций дуплогнездников. С другой стороны, жизненное пространство может ограничивать численность популяции. К примеру, количество белой куропатки, ряда млекопитающих (ондатра и др.) резко сокращается, если они не находят подходящих местообитаний даже при благопри­ятном сочетании остальных факторов.

Зависимые от плотности факторы, как пра­вило, воздействуют на скорость роста популя­ции. При этом она может изменяться в трех направлениях.

У видов с сильными колебаниями численно­сти (мышевидные грызуны, насекомые) темпы роста популяции обычно стабилизируются при высокой плотности популяции, т.е. почти не изменяются до тех пор, пока популяция не достигнет предельной численности. При макси­мальной плотности темп роста резко падает.

Третье направление, обусловленное влияни­ем зависимых от плотности факторов, заключа­ется в том, что темпы роста популяции могут быть максимальными и при средних показа­телях плотности. Но и в данном случае плот­ность популяции, достигнув максимума, начина­ет уменьшаться. Это особенно характерно для некоторых птиц и насекомых.

7 Внутрипопуляционная регуляция численно­сти популяций

Плотность популяции обычно имеет определенный оптимум. При любом отклонении численности от этого оптимума начинают срабатывать механизмы ее внутрипопуляционной регуляции. Одним из основных механизмов, способствующих установлению в популяции устойчивой стабильности, служит действие зависимых от плотности факторов. Абио­тические факторы также влияют на смертность популяции, но самостоятельно не создают ее устойчивой стабильности.

Регуляция численности популяций у различ­ных видов животных и растений осуществляется по-разному. Тем не менее, в каждой из них определенным путем устанавливается оптимум плотности.

Рост плотности популяций многих насекомых сопровождается уменьшением размеров осо­бей, снижением их плодовитости, повышением смертности личинок и куколок, изменением скорости развития и соотношения полов, а так­же увеличением количества диапаузирующих особей, что резко снижает активную часть по­пуляции.

Нередко при чрезмерном возрастании плот­ности популяции стимулируется каннибализм. Ярким примером может служить явление по­едания своих же яиц мучными хрущаками. Каннибализм наблюдается у некоторых видов рыб, у земноводных и других животных.

Одним из важных механизмов внутрипопуляционной регуляции численности выступает эмиграция, интенсивность которой стимулируется повышением плотности популяции. Это доволь­но типично для многих насекомых, у которых при определенной величине плотности популя­ции отмечается выселение части особей, иногда значительной, в менее предпочитаемые ими места обитания того же ареала. У некоторых видов тлей повышение плотности популяции сопровождается появлением крылатых особей, способных расселяться. При переуплотнении популяции эмиграции происходят у ряда млеко­питающих (особенно у мышевидных грызунов) и птиц.

Достаточно изучена регулирующая роль внутривидовой конкуренции за ограниченные ресурсы. У падальных мух из огромного количества откладываемых на труп яиц выходит так много личинок, что пищи на всех не хватает. В результате катастрофически воз­растает смертность их в ранних возрастах. Сходное явление обнаружено у короедов), муравьев-лазиусов, у некото­рых стрекоз и других насекомых.

В наиболее простых случаях внутрипопуляционные регуляторные механизмы численности проявляются в виде непосредственной конку­ренции за необходимые для жизни ресурсы, количество которых недостаточно для удовлет­ворения потребностей всех особей. Известно, что плотность популяции яблонной плодожорки и капустной моли регулируется конкурен­цией за пищу и места для окукливания. Внутри­видовая конкуренция у некоторых мух в случае возрастания плотности популяции до определен­ного уровня приводит к падению массы куколок, что сопровождается повышенной смертностью.

Важной является проблема «минимальной жизнеспособной популяции» , суть которой состоит в определении минимальной численности популяции, которая гарантировала бы ее существование в течение какого-то достаточно дли­тельного периода. В то же время падение плотности популяции ниже оптимального уровня, например при усиленном истреблении крыс, вызывает повышение плодовитости и стимули­рует их более раннее половое созревание.

Некоторые механизмы регуляции численно­сти популяций одновременно могут выступать и как механизмы, предотвращающие внутривидо­вую конкуренцию. Так, если птица отмечает свой гнездовой участок пением, то другая пара этого же вида гнездится за его пределами. Метки, оставляемые многими млекопитающи­ми, ограничивают их охотничий участок и пре­дупреждают вселение других особей. Все это снижает внутривидовую конкуренцию и препят­ствует чрезмерному уплотнению популяции.

У растений регуляторными механизмами численности популяций служит, прежде всего, внутривидовая конкуренция. Она обычно связа­на с повышенной густотой произрастания. В переуплотненных посевах, например, происходит уменьшение количества семенной продукции, что имеет большое значение для сельского и лесного хозяйства. Чаще всего растения одного вида конкурируют за свет и влагу. В густых посевах они затеняют друг друга, при ограни­ченном количестве воды испытывают ее недо­статок. В результате часть их погибает. Такое явление наиболее характерно для многих ого­родных культур и лесных растений. В лесу всегда значительно больше молодых растений, чем старых. Внутривидовой конкуренцией за влагу объясняется нередко встречающееся пра­вильное распределение пустынных растений. Создается впечатление, словно их кто-то расса­дил на строго определенном расстоянии друг от друга. В понижениях местности, в оазисах эта равномерная разреженность популяций расте­ний сразу же исчезает. Подобным же образом распределяются в африканских саваннах свето­любивые и относительно влаголюбивые баоба­бы.

Однако следует учитывать, что популяция обычно входит в состав сообщества и что устойчивое существование биоценозов возможно только при определенных количественных соотношениях всех компонентов. Этим и вызвана необходимость регуляции численности, обеспечивающей устойчивое состояние, как отдельных популяций, так и биоценозов в целом.

8 Популяция как саморегулирующаяся систе­ма

Популяции животных, растений и микроор­ганизмов обладают способностью к естествен­ному регулированию плотности, т.е. плотность при более или менее значительных колебаниях остается в устойчивом состоянии между своими верхним и нижним пределами. Это обеспечива­ется действием определенных приспособитель­ных механизмов. Оно основано на том, что поступление энергии, необходимой для выжива­ния той или иной популяции, не превышает некоторого уровня и сохраняет, таким обра­зом, размеры данной популяции.

Тенденция живых систем, в том числе и популяций, поддерживать внутреннюю стабиль­ность с помощью собственных регулирующих механизмов называется гомеостазом, а коле­бания численности популяций в пределах какой-то средней величины - их динамическим рав­новесием.

Биологическое регулирование (динамиче­ское равновесие, гомеостаз) популяции, или ее автоматическое саморегулирование, абиотиче­ские факторы, независимые от плотности популяции, вызывать не могут, если они действуют изолированно от биотических. Только зависимые от плотности популяции факторы в состо­янии регулировать численность и обеспечивать ее равновесие.

Все биологические системы характеризуют­ся большей или меньшей способностью к саморегуляции, т.е. к гомеостазу. С помощью саморегуляции поддерживается в целом существование каждой системы - ее состав и струк­тура, характерные внутренние связи и преобразования в пространстве и времени. Такими гомеостатическими системами являются прежде всего каждая отдельная особь, а затем популя­ция. Поскольку саморегулирующиеся системы не замкнуты, они активно взаимодействуют с внешней средой и поэтому подвержены изме­нениям. Изменения бывают не только цикличе­скими с возвратом к исходному состоянию, но и исторически необратимыми. Однако и те и другие регулируются в направлении сохранения системы, в рассматриваемом случае - популя­ции.

Саморегулирование популяции осуществля­ется действующими в природе двумя взаим­но уравновешивающимися буферными силами. Это, с одной стороны, свойственная организ­мам способность к размножению, с другой - зависящие от плотности популяции реакции, ограничивающие воспроизводство.

Саморегуляция - необходимое приспособ­ление организмов для поддерживания жизни в постоянно меняющихся условиях.

В эволюционном развитии организмов изме­нения касаются не отдельной особи, а их совокупности - популяции. Эти изменения также носят регуляторный характер. Вот почему популяция как элементарная эволюционирующая единица обладает не только конкретной структурой, но и способностью к саморегуляции. При этом численность ее регулируется темпом раз­множения, фенотипическое разнообразие - естественным отбором, а генетическое - мутированием, скрещиванием, естественным от­бором.

Популяции - открытые системы. Имеется множество каналов, по которым в популяцию поступает информация. Эти входные каналы, связывающие популяцию с внешней средой, специализированы и контролируются самой по­пуляцией. Поэтому все регуляторные процессы осуществляются всегда за счет сил, действую­щих внутри популяции. Следовательно, биологическая регуляция представляет собой саморе­гуляцию. Однако, несмотря на то, что популяции обладает внутренним механизмом саморегуля­ции, действие которого направлено на поддер­жание постоянства структуры, последняя не ос­тается неизменной в новой среде, т. е. с изме­нением условий существования изменяется и популяция.

Поскольку при рассмотрении вопросов, свя­занных с плодовитостью, смертностью, мигра­циями особей, с влиянием зависимых и незави­симых от плотности факторов на численность внутривидовых группировок, с внутривидовой конкуренцией, эффектом группы, фазовой изменчивостью и с другими явлениями, уже иллю­стрировались процессы саморегуляции численности популяций, ограничимся следующими примерами. Хорошо известно, что изменения условий среды могут привести к резкому повы­шению смертности. В результате в популяции возникает сигнал, информирующий о катастро­фическом сокращении численности. Это влияет на физиологию всех членов популяции, что про­является в мобилизации ее ресурсов на сведе­ние к минимуму затрат энергии, на поддержа­ние нормальной жизнедеятельности, на повы­шение стойкости особей к неблагоприятным факторам. В итоге снижаются темпы старения особей, возрастает относительное число самок, увеличивается их плодовитость. Такое явление изучено на популяциях многих животных, осо­бенно насекомых, земноводных и мышевидных грызунов.

Диаметрально противоположный характер носит саморегуляция при резком повышении плотности популяции. В переуплотненную попу­ляцию поступает соответствующий сигнал, и отдельные особи ее, становясь каннибалами, интенсивно истребляют своих собратьев. Кроме того, резко снижается плодовитость самок, воз­растает смертность наиболее слабых особей. В результате через сравнительно короткий про­межуток времени численность популяции вхо­дит в норму.

Важным механизмом регуляции численно­сти, проявляющимся в переуплотненной попу­ляции, является стресс-реакция (от англ. stress - напряжение). Если на популяцию воз­действует какой-то сильный раздражитель, она отвечает на него неспецифической реакцией, которая и называется стрессом. В живой приро­де различают много форм стресса: антропический (возникает у животных под воздействием деятельности человека); нервно-психический (проявляется при несовместимости индивиду­умов в группе или в результате переуплотнения популяции); тепловой; шумовой и др. Напри­мер, в результате переуплотнения популяции у отдельных особей возникают такие физиологи­ческие изменения, которые приводят к резкому сокращению рождаемости и увеличению смер­тности. У млекопитающих такое явление по­лучило название стресс-синдрома . При этом животные становятся настолько агрессивными (жестокие драки, нетерпимость присутствия со­седа и т. д.), что у них почти полностью прекра­щается размножение. В стрессовом состоянии увеличивается кора надпочечников и повышает­ся концентрация кортикостероидных гормонов. У самок нарушается овуляция, происходит ре­зорбция эмбрионов, не проявляются инстинкты заботы о потомстве и т. д.

Природа сигналов, воспринимаемых популя­цией как «приказ» к действию, весьма разнообразна, причем система сигнализации работает безотказно. Поэтому даже чрезвычайно высо­кая плотность или смертность не вызывают рез­ких нарушений в структуре популяции. Этим гарантируется восстановление численности по­пуляции в пределах оптимума в относительно кратковременные сроки. Так кончались, к при­меру, многочисленные вспышки массового размножения насекомых-вредителей.

Следовательно, любая популяция растений, животных и микроорганизмов - это совершен­ная живая система, способная к саморегуляции. Вместе с тем нельзя забывать, что популяция - это наименьшая эволюционирующая единица. Она существует не изолированно, а в связи с популяциями других видов. Поэтому в природе широко распространены и внепопуляционные механизмы автоматической регуляции, точнее, межпопуляционные. При этом популяция явля­ется регулируемым объектом, а в качестве регулятора выступает биогеоценоз, слагающий­ся из множества популяций разных видов. Био­геоценоз в целом и входящие в его состав популяции других видов существеннейшим об­разом влияют на данную, конкретную популя­цию, а каждая популяция, со своей стороны, воздействует на биогеоценоз, в состав которо­го она входит.