Законы Фарадея в химии и физике — краткое объяснение простыми словами. Законы электролиза

1. Первый закон Фарадея - фундаментальный количественный закон электрохимии.

2.Электрохимический эквивалент.

3.Кулонометры.Классификация кулонометров.

4. Выход вещества по току.

5.Способы определения выхода по току при использовании постоянного и импульсного тока.

6.Второй закон Фарадея.

7.Кажущиеся случаи отклонения от законов Фарадея.

1. Первый закон Фарадея

Известны три основных типа кулонометров: весовые (гравиметрические), объемные (волюметрические) и титрационные .

В весовых кулонометрах (к ним относятся серебряные и медные) количество прошедшего в них электричества рассчитывается по изменению массы катода или анода. В объемных кулонометрах расчет производится на основании измерения объема получающихся веществ (газа в водородном кулонометре, жидкой ртути в ртутном кулонометре). В титрационныхкулонометрах количествоэлектричества определяется по данным титрования веществ, образующихся в растворе в результате электродной реакции.

Медный кулонометр наиболее распространен в практике лабораторных исследований, т.к. он является простым в изготовлении и достаточно точным. Точность определения количества электричества составляет 0,1 %. Кулонометр состоит из двух медных анодов и катода из тонкой медной фольги, расположенного между ними. Электролитом в медномкулонометре служит водный раствор состава: CuSO 4 ∙ 5H 2 O, H 2 SO 4 и этанол C 2 H 5 OH.Серная кислота повышает электрическую проводимость электролита и, кроме того, препятствует образованию основных соединений меди в прикатодном пространстве, которые могут адсорбироваться на катоде, увеличивая тем самым его массу. H 2 SO 4 в электролите медного кулонометра необходима для предотвращения накопления соединений Cu 1+ , которые могут образовываться в результате реакции диспропорционирования:

Cu 0 + Cu 2+ → 2Cu +

Этиловый спирт добавляют в электролит для получения более мелкокристаллических, компактных катодных осадков и с целью предотвращения окисления медных электродов кулонометра.

О количестве прошедшего электричества судят по изменению массы катода, до и после электролиза.

катодом, а анод готовится из чистого серебра.

В качестве электролита в серебряном кулонометре используется нейтральный или слабокислый 30% раствор нитрата серебра.

Газовый водородно-кислородный кулонометр применяется для приближенных измерений малых количеств электричества. В нем измеряют общий объем водорода и кислорода, выделяющихся при электролизе водного раствора H 2 SO 4 или NaOH, а из этой величины вычисляют количество прошедшего электричества. Применяют эти кулонометры сравнительно редко, т.к. точность их небольшая, а в работе они менее удобны, чем весовые кулонометры.

К объемным кулонометрам относится также ртутный кулонометр . Он применяется главным образом в промышленности для измерений количества электричества. Точность ртутного кулонометра составляет 1%, но он может работать при больших плотностях тока. Анодом служит ртуть. Уголь – катод. Электролитом служит раствор иодида ртути и иодида калия. По уровню ртути в трубке рассчитывают количество электричества.

Наиболее распространенные из титрационныхкулонометров – йодный

и кулонометрКистяковского .

Йодныйкулонометр представляет собой сосуд с разделенными катодным и анодным пространствами платиновоиридиевыми электродами. В анодное отделение вводят концентрированный раствор иодида калия с добавлением соляной кислоты, в катодное отделение – раствор соляной кислоты. При пропускании тока на аноде выделяется йод, который затем титруют тиосульфатом натрия (Na 2 S 2 O 3). По результатам титрования рассчитывают количество электричества.

Кулонометр Кистяковского - это стеклянный сосуд. Анодом служит серебряная проволока, впаянная в стеклянную трубку со ртутью, для обеспечения контакта. Сосуд заполняют раствором нитрата калия (15-20%). В этот раствор погружают платиновоиридиевый катод. При пропускании тока происходит анодное растворение серебра. И также по результатам титрования раствора рассчитывают количество электричества.

4. Выход по току

Zn 2+ +2ē →Zn

Если на электроде протекает несколькопараллельных электрохимических реакций, то I закон Фарадея будет справедлив для каждой из них.

Для практических целей, для того, чтобы учесть какая доля тока или количества прошедшего через электрохимическую систему электричества расходуется на каждую конкретную реакцию введено понятие выхода вещества по току .

Таким образом, ВТ позволяет определить часть количества прошедшего через электрохимическую систему электричества, которая приходится на долю данной электрохимической реакции.

Знание ВТ необходимо, как при решении теоретических вопросов: например, при построении парциальных поляризационных кривых и выяснении механизма электрохимической реакции, так и в практике электроосаждения металлов, неметаллов, сплавов, с целью оценки эффективности технологической операции. ВТ на практике чаще всего определяют делением практической массы вещества на теоретическую массу, определенную по закону Фарадея.

m практ – масса вещества, практически превратившегося в результате прохождения определенного количества электричества; m теор - масса вещества, которая должна превратиться теоретически при прохождении того же количества электричества.

ВТ для процессов, протекающих на катоде, как правило, не совпадают с ВТ анодных процессов, поэтому следует различать катодный и анодный выход по току. До сих пор были рассмотрены случаи определения ВТ когда через границу раздела проводник I рода - проводник II рода протекает постоянный электрический ток.

5. Способы определения ВТ при использовании импульсного тока

Если же через границу раздела фаз протекает импульсный ток, то при определении ВТ возникают большие трудности. Единой методики или прибора для определения ВТ при импульсномэлектролизе не существует. Сложность определения ВТ в условиях импульсногоэлектролиза обусловлена тем, что проходящий через систему ток расходуется не только на электрохимическую реакцию, но и на заряжение двойного электрического слоя. Электрический ток, проходящий через границу раздела и вызывающий электрохимическое превращение, называется часто фарадеевским током. Ток заряжения расходуется на заряжение двойного электрического слоя, реорганизацию растворителя, самого реагента, т.е. на все на то, что создает условия для протекания электрохимической реакции, поэтому выражение для общего тока, проходящего через электрохимическую систему, будет выглядеть следующим образом:

I = Iз + Iф, где Iз – ток заряжения, Iф – фарадеевский ток.

Если не требуется определения абсолютных значений ВТ, то в качестве критерия оценки эффективности импульсного электролиза можно использовать отношения количества электричества, затраченного на растворение осадка к количеству электричества, затраченного на его формирование.

6. Второй закон Фарадея.

Математически этот закон выражается уравнением:

Второй закон Фарадея является непосредственным следствием первого закона. Во втором законе Фарадея отражена связь, существующая между количеством прореагировавшего вещества и его химической природой.

Согласно второму закону Фарадея:

Если на границе раздела проводник I рода - проводник II рода протекает одна и только одна, электрохимическая реакция, в которой участвует несколько веществ, то массы участников реакции, претерпевших превращения, относятся друг к другу как их химические эквиваленты.

7. Кажущиеся случаи отклонения от законов Фарадея

I закон Фарадея , базирующийся на атомистической природе вещества и электричества, является точным законом природы. Отклонений от него быть не может. Если на практике при расчетах наблюдаются отклонения от этого закона, то они всегда обусловлены неполным учетом процессов, сопутствующих основной электрохимической реакции. Например, при электролизе водного раствора NaCl в системе с платиновыми электродами и разделенными пористой диафрагмой анодным и катодным пространствами на катоде протекает реакция:

2H 2 O + 2ē = H 2 + 2OH -

а на аноде: 2Cl - - 2ē = Cl 2

Количество образующегося газообразного хлора всегда меньше, чем это следует по закону Фарадея из-за того, что Cl 2 растворяется в электролите и вступает в реакцию гидролиза:

Cl 2 + H 2 O → HCl+ HClO

Если учесть массу хлора, прореагировавшего с водой, получим результат, соответствующий рассчитанному по закону Фарадея.

Или при анодном растворении многих металлов параллельно идут два процесса – образование ионов нормальной валентности и так называемых субионов – т.е. ионов низшей валентности, например: Cu 0 - 2ē → Cu 2+ и

Cu- 1ē → Cu + . Поэтому расчет по закону Фарадея в предположении, что образуются только ионы высшей валентности, оказывается неправильным.

Часто на электроде протекает не одна электрохимическая реакция, а несколько самостоятельных параллельных реакций. Например, при выделении Zn из кислого раствора ZnSO 4 наряду с разрядом ионов Zn:

Zn 2+ +2ē →Zn

протекает реакция восстановления ионов гидроксония: 2Н 3 О + +2ē → Н 2 + 2H 2 O.

Если на электроде протекает несколько параллельных электрохимических реакций, то I закон Фарадея будет справедлив для каждой из них.

Законыэлектролиза (законыФарадея)

Поскольку прохождение электрического тока через электрохимические системы связано с химическими превращениями, между количеством протекающего электричества и количеством прореагировавших веществ должна существовать определенная зависимость. Она была открыта Фарадеем и получила свое выражение в первых количественных законах электрохимии, названных впоследствии законами Фарадея.

Первый закон Фарадея . Количества веществ, превращённых при электролизе, пропорциональны количеству электричества, прошедшего через электролит :

D m =k э q =k э It ,

D m – количество прореагировавшего вещества; k э – некоторый коэффициент пропорциональности; q – количество электричества, равное произведению силы тока I на время t . Еслиq = It = 1, то D m = k э, то есть коэффициент k э представляет собой количество вещества, прореагировавшего в результате протекания единицы количества электричества. Коэффициент k э называется электрохимическим эквивалентом .

Второй закон Фарадея отражает связь, существующую между количеством прореагировавшего вещества и его природой: при постоянном количестве прошедшего электричества массы различных веществ, испытывающие превращение у электродов (выделение из раствора, изменение валентности), пропорциональны химическим эквивалентам этих веществ :

D m i /A i = const .

Можно объединить оба закона Фарадея в виде одного общего закона : для выделения или превращения с помощью тока 1 г-экв любого вещества (1/z моля вещества) необходимо всегда одно и то же количество электричества, называемое числом Фарадея (или фарадеем ):

D m =It = It .

Точно измеренное значение числа Фарадея

F = 96484,52 ± 0,038Кл/г-экв.

Таков заряд, несомый одним грамм-эквивалентом ионов любого вида. Умножив это число на z (число элементарных зарядов иона), получим количество электричества, которое несёт 1 г-ион . Разделив число Фарадея на число Авогадро, получим заряд одного одновалентного иона, равный заряду электрона:

e = 96484,52 / (6,022035 × 10 23) = 1,6021913 × 10 –19 Кл.

Законы, открытые Фарадеем в 1833 г., строго выполняются для проводников второго рода. Наблюдаемые отклонения от законов Фарадея являются кажущимися . Они часто связаны с наличием неучтённых параллельных электрохимических реакций. Отклонения от закона Фарадея в промышленных установках связаны с утечками тока, потерями вещества при разбрызгивании раствора и т.д. В технических установках отношение количества продукта, полученного при электролизе, к количеству, вычисленному на основе закона Фарадея, меньше единицы и называется выходом по току :

В Т = = .

При тщательных лабораторных измерениях для однозначно протекающих электрохимических реакций выход по току равен единице (в пределах ошибок опыта). Закон Фарадея точно соблюдается, поэтому он лежит в основе самого точного метода измерения количества электричества, прошедшего через цепь, по количеству выделенного на электроде вещества. Для таких измерений используюткулонометры . В качестве кулонометров используют электрохимические системы, в которых нет параллельных электрохимических и побочных химических реакций. По методам определения количества образующихся веществ кулонометры подразделяют на электрогравиметрические, газовые и титрационные . Примером электрогравиметрических кулонометров являются серебряный и медный кулонометры. Действие серебряного кулонометра Ричардсона, представляющего собой электролизер

(–) Ag ï AgNO 3 × aq ï Ag (+) ,

основано на взвешивании массы серебра, осевшей на катоде во время электролиза. При пропускании 96500 Кл (1 фарадея) электричества на катоде выделится 1 г-экв серебра (107 г). При пропускании n F электричества на катоде выделяется экспериментально определенная масса (D m к ). Число пропущенных фарадеев электричества определяется из соотношения

n = D m /107 .

Аналогичен принцип действия медного кулонометра.

В газовых кулонометрах продуктами электролиза являются газы, и количества выделяющихся на электродах веществ определяют измерением их объемов. Примером прибора такого типа является газовый кулонометр, основанный на реакции электролиза воды. При электролизе на катоде выделяется водород:

2Н 2 О+2е – =2ОН – +Н 2 ,

а на аноде – кислород:

Н 2 О=2Н + +½ О 2 +2е V – суммарный объем выделенного газа, м 3 .

В титрационных кулонометрах количество вещества, образовавшегося в процессе электролиза, определяют титриметрически. К этому типу кулонометров относится титрационный кулонометр Кистяковского, представляющий собой электрохимическую систему

(–) Pt ï KNO 3 , HNO 3 ï Ag (+) .

В процессе электролиза серебряный анод растворяется, образуя ионы серебра, которые оттитровывают. Число фарадеев электричества определяют по формуле

n = mVc ,

где m – масса раствора, г;V – объем титранта, пошедший на титрование 1 г анодной жидкости;c –концентрация титранта, г-экв/см 3 .

Что может быть лучше, чем вечером понедельника почитать про основы электродинамики . Правильно, можно найти множество вещей, которые будут лучше. Тем не менее, мы все равно предлагаем Вам прочесть эту статью. Времени занимает не много, а полезная информация останется в подсознании. Например, на экзамене, в условиях стресса, можно будет успешно извлечь из недр памяти закон Фарадея. Так как законов Фарадея несколько, уточним, что здесь мы говорим о законе индукции Фарадея.

Электродинамика – раздел физики, изучающий электромагнитное поле во всех его проявлениях.

Это и взаимодействие электрического и магнитного полей, электрический ток, электро-магнитное излучение, влияние поля на заряженные тела.

Здесь мы не ставим целью рассмотреть всю электродинамику. Упаси Боже! Рассмотрим лучше один из основных ее законов, который называется законом электромагнитной индукции Фарадея .

История и определение

Фарадей, параллельно с Генри, открыл явление электромагнитной индукции в 1831 году. Правда, успел опубликовать результаты раньше. Закон Фарадея повсеместно используется в технике, в электродвигателях, трансформаторах, генераторах и дросселях. В чем суть закона Фарадея для электромагнитной индукции, если говорить просто? А вот в чем!

При изменении магнитного потока через замкнутый проводящий контур, в контуре возникает электрический ток. То есть, если мы скрутим из проволоки рамку и поместим ее в изменяющееся магнитное поле (возьмем магнит, и будем крутить его вокруг рамки), по рамке потечет ток!

Этот ток Фарадей назвал индукционным, а само явление окрестил электромагнитной индукцией.

Электромагнитная индукция – возникновение в замкнутом контуре электрического тока при изменении магнитного потока, проходящего через контур.

Формулировка основного закона электродинамики – закона электромагнитной индукции Фарадея, выглядит и звучит следующим образом:

ЭДС , возникающая в контуре, пропорциональна скорости изменения магнитного потока Ф через контур.

А откуда в формуле минус, спросите Вы. Для объяснения знака минус в этой формуле есть специальное правило Ленца . Оно гласит, что знак минус, в данном случае, указывает на то, как направлена возникающая ЭДС. Дело в том, что создаваемое индукционным током магнитное поле направлено так, что препятствует изменению магнитного потока, который вызвал индукционный ток.

Примеры решения задач

Вот вроде бы и все. Значение закона Фарадея фундаментально, ведь на использовании данного закона построена основа почти всей электрической промышленности. Чтобы понимание пришло быстрее, рассмотрим пример решения задачи на закон Фарадея.

И помните, друзья! Если задача засела, как кость в горле, и нет больше сил ее терпеть - обратитесь к нашим авторам! Теперь вы знаете . Мы быстро предоставим подробное решение и разъясним все вопросы!

Электролиз - это физико-химический процесс, осуществляемый в растворах различных веществ при помощи электродов (катода и анода). Существует множество веществ, которые химически разлагаются на составляющие при прохождении через их раствор или расплав электрического тока. Они называются электролитами. К ним относятся многие кислоты, соли и основания. Различают сильные и слабые электролиты, но это деление условно. В некоторых случаях слабые электролиты проявляют свойства сильных и наоборот.

При пропускании тока через раствор или расплав электролита на электродах оседают различные металлы (в случае кислот просто выделяется водород). Используя это свойство, можно подсчитать массу выделившегося вещества. Для подобных экспериментов используют раствор медного купороса. На угольном катоде при пропускании тока можно легко увидеть красный медный осадок. Разница между значениями его масс до и после эксперимента и будет массой осевшей меди. Она зависит от количества электричества, прошедшего через раствор.

Первый закон Фарадея можно сформулировать так: масса вещества m, выделившегося на катоде прямо пропорциональна количеству электричества (электрическому заряду q), прошедшему через раствор или расплав электролита. Этот закон выражается формулой: m=KI=Kqt, где K - коэффициент пропорциональности. Его называют электрохимическим эквивалентом вещества. Для каждого вещества он принимает различные значения. Он численно равен массе вещества, выделившегося на электроде за 1 секунду при силе тока 1 ампер.

Второй закон Фарадея

В специальных таблицах можно посмотреть значения электрохимического для различных веществ. Вы заметите, что эти значения существенно отличаются. Объяснение такому различию дал Фарадей. Оказалось, что электрохимический эквивалент вещества прямо пропорционален его химическому эквиваленту. Это утверждение носит название второго закона Фарадея. Его истинность была подтверждена экспериментально.

Формула, выражающая второй закон Фарадея, выглядит так: K=M/F*n, где M - молярная масса, n - валентность. Отношение молярной массы к валентности называется химическим эквивалентом.

Величина 1/F имеет одно и то же значение для всех веществ. F называется постоянной Фарадея. Она равна 96,484 Кл/моль. Эта величина показывает количество электричества, которое нужно пропустить через раствор или расплав электролита, чтобы на катоде осел один моль вещества. 1/F показывает сколько моль вещества осядет на катоде при прохождении заряда в 1 Кл.

Между массой превращенного при электролизе ве­щества и количеством прошедшего через электролит элек­тричества существует связь, которая находит отражение в двух законах Фарадея.

I закон Фарадея . Для любого данного электрод­ного процесса масса превращенного вещества прямо про­порциональна количеству электричества, прошедшего че­рез электролит:

m = kQ, (2.10)

где m - масса превращенного вещества, г; Q - количест­во электричества (Кл), равное произведению силы тока (I , А) на время (t , с); k - электрохимический эквивалент ве­щества, выражающий число граммов его, превращенное одним кулоном электричества.

II закон Фарадея . При пропускании равного количества электричества через растворы разных элек­тролитов масса каждого из веществ, претерпеваю­щих превращение, пропорциональна его химическому эквиваленту т 1: т 2: m 3 ... = m э1: m э2: m э3 …(где m э -эквивалентная масса вещества). Если масса одного из пре­вращенных веществ при прохождении определенного количества электричества оказалась равной его эквивалентной массе (т 1 =m э1), то и для других веществ окажутся справедливыми равенства m 2 = m э2 , m 3 = m э3 и т. д.

Таким образом, для превращения одной экви­валентной массы любого вещества требуется одно и то же коли­чество электричества, называемое постоянной Фарадея F (96494 Кл/моль). Постоянная Фарадея – это заряд, который несет на себе один моль электронов или один моль однозарядных ионов (т.е. 6,02·1023 электронов или однозарядных ионов).

Второй закон Фарадея можно также записать в следующей редакции: для разряда одного моль ионов на электроде через раствор необходимо пропустить столько фарадеев электричества, сколько элементарных зарядов имеет данный ион.

На основании II закона Фарадея мож­но написать

k = m э /F. (2.11)

Из соотношений (2.10) и (2.11) вытекает объе­диненное уравнение законов Фарадея:

m = (m э /F )Q = ( m э /F )It. (2.12)

Им широко пользуются для различных расчетов в электрохимии. В частности, на законах Фарадея осно­ван самый точный способ измерения количества электри­чества, прошедшего через цепь. Он заключается в опре­делении массы вещества, выделившегося при электролизе на электроде. Для этого служат приборы, называемые кулонометрами. В лабораторной практике используется медный кулонометр, в котором электролизу подвергается подкисленный раствор CuSO 4 с медными электродами. Важно, чтобы в кулонометре на электроде происходила только одна электрохимическая реакция, и полученный продукт был доступен точному количественному опреде­лению. Например, все количество электричества, прохо­дящее через медный кулонометр, расходуется на пере­нос меди с анода на катод, где масса ее определяется гравиметрическим методом.

В исследовательских целях пользуются серебряным кулонометром или газовым, в котором измеряют объем смеси (2Н 2 + О 2), полученной электролизом водного рас­твора КОН.

Использование кулонометров дает возможность определить долю полезно затраченного тока (т.е. тока, израсходованного на получение полезного продукта), которая характеризуется выходом по току. Выход по току - это отношение фактически полученного при электролизе вещества к теоретически рассчитанному. Обычно выход по току ηвыражается в процентах. Тогда:

η = (m практ /m теорет)100%. (2.13)

Можно иначе подойти к расчету η. Если по фактиче­ски выделенной массе вещества определить на основе (2.12) количество полезно затраченного электричест­ва Q ’ то η выразится как отношение полезного электри­чества к его общему количеству, прошедшему через цепь:

η = (Q ’/Q )100%. (2.14)

Законы Фарадея утвердили представление об атоми­стической природе электричества. Эти представления легли в основу расчета важнейшей константы - постоян­ной Авогадро. Связь между постоянной Фарадея F, Аво-гадро N а и зарядом электрона е следует из соотношения:

F/e = N A (2.15)

Применение электролиза. Электролиз с растворимым анодом применяется для очистки металлов (электрорафинирование ). При электрорафинировании меди в электролизер помещают в качестве анода пластины из очищаемой меди (катод - пластины из электролитически ранее очищенной меди). На аноде и катоде проходят процессы соот­ветственно:

Сu (загрязненная) – 2ē = Сu 2+ ,

Сu 2+ + 2ē = Сu (чистая).

При электрорафинировании меди загрязнения из более благо­родных металлов типа Ag или Аu в раствор не переходят и соби­раются на дне электролизера. Загрязнения из менее благородных металлов типа Pb, Fe, Zn, как и сама медь, переходят в раствор, но на катоде не осаждаются и поэтому не загрязняют осажда­ющуюся на нем медь. В качестве растворимых анодов могут быть кроме меди никель, кадмий, алюминий и другие металлы.

Электролиз с растворимым анодом используется в гальвано­технике для покрытий одних металлов тонкими слоями других (гальваностегия ). При этом покрываемые металлом изделия являются при элек­тролизе катодом, а в качестве анода используется металл покры­тия. Технологически это очень удобно, так как концентрации ионов (солей) в электролизном растворе не изменяются. Электрохимически наносят покрытия декоративные, коррозионностойкие, упрочняющие поверхность (хромирование). При помощи покрытий восстанавливают размеры деталей (ремонт). Чтобы покрытие прочно удерживалось, поверхность металла перед нанесением покрытия тщательно очищают (шлифуют, полируют) и обезжиривают (обрабатывают горячим раствором соды, протирают мелом в смеси со щелочью и т.д.). Для удаления оксидов поверхность металла протравливают 15…20% раствором серной кислоты 10…15 мин. Для окончательного удаления пленки оксида деталь очищают декапированием , подключая перед гальванизацией на короткое время к аноду. Наилучшее сцепление покрытия с поверхностью металла наблюдается для мелкокристаллических покрытий. Нужной структуры покрытия добиваются, изменяя состав электролита и режим электролиза:---------