Возможности применения математических знаний в повседневной жизни. Занятие на тему "значение математики в жизни человека"

В обществе существует точка зрения, согласно которой все люди в вопросах интеллектуального познания имеют склонность или к математическому полюсу, или к гуманитарному. Ребёнок идёт в школу, получает пятёрки по литературе, а математика ему никак не даётся. «Ничего, - говорят родители, - он у нас гуманитарий». Часто встречается и обратная ситуация.

Но насколько это справедливо? Является ли математика объективно более сложной в освоении, чем гуманитарные дисциплины? Заложены ли способности человека генетически или являются результатом воспитания?

В ходе исследования Математики оказались умнее гуманитариев выяснилось: если ученик хорошо сдаёт экзамены по точным дисциплинам, в большинстве случаев он так же успешно справляется и с гуманитарными. А учащиеся в гуманитарных школах проваливают не только математику, но и языки.

Значит ли это, что математические дисциплины более сложные? Нет.

Если человек хорошо сдаёт все экзамены, это говорит о его ответственности, а не о способностях. Многие люди легко могут оперировать абстрактными понятиями и изучать языки, но им очень трудно даётся математика. К тому же другие исследования показывают, что между освоением математических и гуманитарных дисциплин нет связи на уровне мозговой деятельности. Это совершенно разные когнитивные способности.

Физиологическая основа интеллектуальных способностей

В рамках исследования Origins of the brain networks for advanced mathematics in expert mathematicians учёные фиксировали мозговую активность математиков и других людей во время выполнения различных заданий. В результате они пришли к следующему выводу.

При выполнении математических операций у человека активизируются особые зоны мозга, которые не связаны с языковыми способностями.

Выходит, разница между математическим и гуманитарным познанием лежит на физиологическом уровне. Есть зоны, ответственные за математическое мышление, есть - за языковое. Нельзя сказать, что какое-то из них более совершенно.

Природа и воспитание

В упоминаемом выше исследовании учёные также пришли к выводу, что способность детей выполнять простейшие алгебраические операции - залог дальнейших математических успехов. Ведь в раннем возрасте, ещё до всякого воспитания, у человека участки мозга развиваются по-разному. У кого-то математические зоны развиты лучше, а у кого-то - хуже.

Поскольку как в элементарных, так и в более сложных задачах задействуется одна нейронная сеть, можно предсказать будущий талант ребёнка ещё до того, как он проявится. Малыш довольно быстро понял, почему 1 + 1 = 2? Тогда в будущем ему относительно просто дадутся синусы и косинусы.

То же самое можно сказать и о гуманитариях. Скорость освоения ребёнком языка, умение улавливать основные законы грамматики позволяют оценить, насколько хорош он будет в постижении гуманитарных наук, так как ранние успехи в этой сфере свидетельствуют о потенциале соответствующей области мозга.

Можно предположить, что физиологические особенности предопределяют наши когнитивные способности. Однако это не так и вот почему:

  • Не учитывается множество других факторов, влияющих на проявление таланта. Например, у человека могут быть задатки математика на физиологическом уровне, но при этом абсолютно отсутствует интерес к этой дисциплине, из-за чего его природный талант не получит развития.
  • То, о чём мы говорим как о физиологической склонности, на самом деле может быть результатом ранней воспитательной деятельности родителей.

Как отмечает швейцарский психолог и философ Жан Пиаже Cognition , развитие и языковых, и математических когнитивных способностей происходит в предоперациональный период (2–7 лет). Именно тогда может проявиться физиологическая предрасположенность ребёнка к определённой деятельности.

Этот период в развитии мозга самый важный, поскольку создание нейронных связей идёт по принципу частоты их использования О особенностях развития мозга от зачатия до подросткового возраста . То есть после 2–3 лет начинают активно развиваться те его зоны, которые чаще всего задействуются.

На этом этапе развитие мозга напрямую зависит от деятельности человека и повторения им каких-либо практик.

Также проливает свет на формирование способностей человека изучение близнецов. Набор генов у них примерно одинаков, а потому различия в интеллектуальных способностях, скорее всего, будут обусловлены внешними факторами.

Такие исследования, проведённые российскими учёными в 90-х годах Откуда берутся умные дети , показали, что с двух лет интеллект у близнецов действительно становится схожим в относительно одинаковых внешних условиях.

Примерно к тому же выводу пришли учёные из Калифорнийского университета в Санта-Барбаре The high heritability of educational achievement reflects many genetically influenced traits, not just intelligence . Внешняя среда имеет значение и играет роль условия реализации биологического базиса.

Выводы

Станет ли человек гуманитарием или математиком, зависит от биологического фактора и наследственности, предопределяющих развитие его мозга. Однако на проявление этого фактора сильно влияет деятельность в детском возрасте. Речь идёт о том периоде, когда человек непосредственно ещё не начал изучение самих дисциплин, но в процессе игры и общения с родителями каким-то образом задействует разные зоны мозга, стимулируя их развитие.

Практически это означает следующее: родители не должны навязывать ребёнку деятельность, к которой у него нет особого влечения и в которой он не очень успешен. Нужно постараться отыскать талант и способствовать его развитию.
















Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Участники: учащиеся 7 класса.

Цели:

  • образовательные: формирование устойчивого интереса к математике;
  • воспитательные: формирование таких качеств личности, как познавательная активность.
  • развивающие: развитие творческих способностей учащихся (воображения, наблюдательности, памяти), монологической речи, способности выявлять причинно – следственные связи, развитие логического мышления.

Задачи:

  • изучить библиографические источники по данной теме;
  • познакомить с историей возникновения и развития математики
  • выявить области применения математических знаний.

Продукты: компьютерная презентация.

Необходимое оборудование: проектор, экран, компьютер.

Ход мероприятия

Вступительное слово учителя:

1 слайд Тема: «Математика в жизни человека»

2 слайд Основопологающий вопрос: Нужна ли математика человеку?

3 слайд Проблемные вопросы:

  • Как и когда зародилась математика?
  • Каким профессиям нужна математика?
  • Каких ученых-математиков вы знаете?
  • Нужны ли знания по математике современному человеку?

Выступление учащихся:

Чтоб водить корабли,
Чтобы в небо взлететь,
Надо многое знать,
И при этом, и при этом,
Вы заметьте-ка,
Очень важная наука
Ма-те-ма-ти-ка!

Почему корабли
Не садятся на мель,
А по курсу идут
Сквозь туман и метель?
Потому что, потому что,
Вы заметьте-ка,
Капитанам помогает
Ма-те-ма-ти-ка!

Чтоб врачом, моряком
Или лётчиком стать.
Надо прежде всего
Математику знать.
И на свете нет профессий
Вы заметьте-ка,
Где бы вам не пригодилась
Математика!

4 слайд Как и когда зародилась математика?

Когда речь идёт о чём-нибудь очень простом, понятном, мы часто говорим: «Дело ясно, как дважды два - четыре!».

А ведь прежде чем додуматься до того, что дважды два - четыре, людям пришлось учиться много, много тысяч лет.

Конечно, это учение шло не за партой. Человек постепенно учился жить: строить жилища, находить дорогу в дальних походах, обрабатывать землю.

Потому что даже в самые далёкие времена, когда люди жили в пещерах и одевались в звериные шкуры, они не могли обойтись без счёта и меры.

Многие правила из школьных учебников арифметики и геометрии были известны древним грекам две с лишним тысячи лет назад.

Другие древние народы - египтяне, вавилоняне, китайцы, народы Индии - в третьем тысячелетии до нашего летосчисления имели сведения по геометрии и арифметике, которых не хватает некоторым ученикам пятого или шестого класса.

С каждым десятилетием математика становилась всё нужнее людям.

5 слайд Пифагор

Великий ученый Пифагор родился около 570 г. до н.э. на острове Самосе. Отцом Пифагора был Мнесарх, резчик по драгоценным камням.

Теорема Пифагора - одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника. Считается, что доказана греческим математиком Пифагором, в честь которого и названа.

Теорема звучит следующим образом: В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов .

6 слайд

В конце девятнадцатого века высказывались разнообразные предположения о существовании обитателей Марса подобных человеку. В шутку, хотя и не совсем безосновательно, было решено передать обитателям Марса сигнал в виде теоремы Пифагора . Неизвестно, как это сделать; но для всех очевидно, что математический факт, выражаемый теоремой Пифагора имеет место всюду и поэтому похожие на нас обитатели другого мира должны понять такой сигнал.

7 слайд

Софья Ковалевская

Девочка из дворянской семьи любила математику и даже ночью прятала под подушку сложный задачник(родители не одобряли её увлечения).

В то время не принято было женщинам поступать в институт, но она поехала против воли родителей в Германию, в университет, и пришла к известному профессору. Он не хотел её брать и, чтобы отделаться, дал несколько им самим составленных задач, сказав, что если она решит, то возьмёт её к себе.

Эти задачи не могли решить даже профессора. Девушка решила за двадцать минут.

Софья Ковалевская закончила университет и стала знаменитым на весь мир математиком

8 слайд

Что может математика?

  • Астроному она помогает определить пути далёких звёзд.
  • Инженер с помощью математики рассчитывает реактивный самолёт, корабль или новую электростанцию.
  • Учёному-физику математика открывает законы атомного ядра, а моряку указывает путь корабля в океане.
  • Словом, математика может всё или почти всё там, где нужно что-либо вычислять

А ведь с математики начинается всё.

  • Ребёнок только родился, а первые цифры в его жизни уже звучат: рост, вес.
  • Малыш растет, не может выговорить слова "математика", а уже занимается ею, решает небольшие задачи по подсчету игрушек, кубиков.
  • Да и родители о математике и задачах не забывают. Готовя ребенку пищу, взвешивая его, им приходится использовать математику.
  • Ведь нужно решить элементарные задачи: сколько еды нужно приготовить для малыша, учитывая его вес.

9 слайд

1 пример

Вы стоите на кассе и оплачиваете товар. Вы купили продуктов на 432 рубля, а денег у вас 500 рублей купюрами по 100 рублей. И вам дают сдачу 40 рублей, хотя должны дать 68 рублей. Значит вас обсчитали на 28 рублей!!!

10 слайд

2 пример

Мне нужно быть на даче в 15.40.Я трачу на дорогу 1.40 часа. Сегодня мне нужно заехать в магазин. Когда мне выезжать? Сколько времени я могу провести в магазине?

11 слайд

12 слайд

Решите задачку.

Как при помощи одного действия и пяти единиц получить 100?

13 слайд

  • 111 - 11 = 100

14 слайд

Где можно обойтись без математики?

  • Вот строители, строят дом. Надо высчитать, сколько цемента, сколько кирпичей. Высоту, ширину. Проект составить.
  • Вот портниха собирается шить платье. Обмеривает человека, составляет выкройку. Нужна ей математика? Наверное…
  • В магазине считают полученный товар, выручку.
  • В банке считают деньги, имея дело с огромными суммами, с процентами.
  • Даже в музыке, в поэзии приходится считать – ритм, размер, восьмые, четвертные, ямбы, хореи.
  • Что уж говорить о таких сложных науках, как космос(ракеты, спутники), компьютерная техника, телевидение, радио! Конечно, ничего этого не изобрели бы без вычислений, без математики
  • То есть математика вся наша жизнь?

15 слайд

Задача на применение признака равенства треугольников на измерение расстояния между двумя недосягаемыми объектами .

Условие: Бригада по прокладке дорог должна сделать тоннель, но расстояние, которое нужно пробить через гору, не известно. Что должна предпринять бригада, чтобы узнать это расстояние, если известно расстояние от А до С и от В до С (рис. 1)?

Рисунок 1

Решение: Бригада не может проложить дорогу вокруг горы. Поэтому они предприняли небольшую хитрость: на месте входа в еще не прорубленный тоннель поставили человека – (А) и на месте выхода тоже – (В), сбоку горы поставили третьего человека – (С), образовался треугольник ABC. Человек А прокладывает прямую через точку С, и человек В тоже прокладывает прямую через точку С. Проведя прямые и поставив на них на определенном расстоянии еще двух людей – (D, E) так, что CD = AC, а СВ = ЕС .Угол ACB = ECD по свойству вертикальных углов, поэтому треугольник DEC равен треугольнику ABC. Теперь бригада соединяет отрезком на местности точки D и Е. Рабочим остается измерить расстояние от Е до D, которое будет равно искомому расстоянию от А до В.

16 слайд

Нужны ли знания по математике современному человеку?

Стремительно изменяется мир и сама жизнь. В неё входят новые технологии. Только математика и решение задач в традиционном понимании не изменяют себе. Математические законы проверены и систематизированы, поэтому человек в важные моменты может положиться на неё, решить любую задачу. Математика не подведёт.

Но с каждым годом у нас появляется всё больше и больше замечательных машин: сложных станков, различных автоматов. Для того чтобы хорошо работать на таких машинах, надо очень много знаний. Сейчас математика нужна не только ученому или инженеру, но и мастеру, и рабочему на заводе.

Однако ещё несколько десятков лет назад встречалось немало таких задач, решить которые было практически невозможно, хотя математики и знали, как их нужно решать. Бывало, что для решения одной единственной задачи десятки людей работали несколько лет. Вычисления шли медленно. Главные «инструменты» математика были те же, что во времена древних греков - собственная голова и чистый лист бумаги с карандашом.

И вот у математики появился новый могучий помощник, который называется электронно-вычислительной машиной. Существующие быстродействующие компьютеры работают в сотни тысяч раз быстрее человека.

Никогда ещё математика не была настолько всеобъемлющей и такой нужной людям наукой, как сегодня. О том, какой будет математика завтра, говорить трудно. Она развивается сейчас так стремительно, так часто делаются в ней новые открытия, что гадать о том, что будет, пожалуй, бесполезно. Одно можно сказать наверняка: завтра математика станет ещё могущественнее, ещё важнее и нужнее людям, чем сегодня.

Известно, что математика никогда не бывает одна, она всегда к чему-то прикладывается! Это говорит о том, что ни одна другая наука не может существовать без математики. Следовательно, если бы человечество не создало мира математики, то оно никогда не смогло бы обладать НАУКОЙ! Для примера возьмем технический прогресс. Чтобы на свет появился какой-то новый аппарат, нужно много ученых, разработчиков. Среди них обязательно окажется математик, потому что в этом, несомненно, есть нужда! Отсюда следует немаловажная роль математики в развитии окружающего нас мира и человечества вообще.

Развитие методов вычислительной математики и нарастание мощности компьютеров позволяют в наши дни выполнять точные расчеты в области динамики сложнейших живых и неживых систем с целью прогнозирования их поведения. Реальные успехи на этом пути зависят от готовности математиков и программистов к работе с данными, полученными традиционными для естественных и гуманитарных наук способами: наблюдение, описание, опрос, эксперимент.

Положение математики в современном мире далеко не то, каким оно было сто или даже только сорок лет назад. Математика превратилась в повседневное орудие исследования в физике, астрономии, биологии, инженерном деле, организации производства и многих других областях теоретической и прикладной деятельности. Многие крупные врачи, экономисты и специалисты в области социальных исследований считают, что дальнейший прогресс их дисциплин тесно связан с более широким и полнокровным использованием математических методов, чем это было до настоящего времени. Не зря греческие ученые говорили, что математика есть ключ ко всем наукам.

Конечно же, вышесказанное еще раз доказывает то, как математика важна не просто сама по себе, а как в ней нуждаются другие науки, опираются на математические факты и, тем самым, помогают развиваться человечеству все дальше и дальше! Математика всегда была неотъемлемой и существеннейшей составной частью человеческой культуры, она является ключом к познанию окружающего мира, базой научно-технического прогресса и важной компонентой развития личности.

Математика содержит в себе черты волевой деятельности, умозрительного рассуждения и стремления к эстетическому совершенству. Ее основные и взаимно противоположные элементы - логика и интуиция, анализ и конструкция, общность и конкретность.

Мы рассмотрели уже много причин, по которым математика считается даже не одной из, а самой важной наукой. Попробуем теперь привести еще ряд фактов, доказывающих это. Они являются простыми, с ними сталкивается любой человек, причем ежедневно.

1. Математика встречается и используется в повседневной жизни, следовательно, определенные математические навыки нужны каждому человеку.

Не правда ли, нам приходится в жизни считать (например, деньги), мы постоянно используем (часто не замечая этого) знания о величинах, характеризующих протяжённости, площади, объёмы, промежутки времени, скорости и многое другое. Всё это пришло к нам на уроках арифметики и геометрии и сгодилось для ориентации в окружающем мире.

Математика нужна детям для формирования духовного облика, развития необходимых черт характера (терпения, трудолюбия). Девочка может учитывать то, что математика поможет ей быть хорошей мамой (помогать своим детям, вести с ними развивающую работу). Кому-то занятие этой наукой придает уверенности в себе, кто-то рад, что узнает об интересных людях (например, об Архимеде). Некоторым математика приятна как наука, большинство осознает ее необходимость в будущей профессии.

Математические знания и навыки необходимы практически во всех профессиях. Прежде всего, конечно, в тех, что связаны с естественными науками, техникой и экономикой. Математика является языком естествознания и техники и потому профессия естествоиспытателя и инженера требует серьезного овладения многими профессиональными сведениями, основанными на математике. Очень хорошо сказал об этом Галилей: ``Философия (речь идёт о натурфилософии, на нашем современном языке - о физике) написана в величественной книге, которая постоянно открыта вашему взору, но понять её может лишь тот, кто сначала научится понимать её язык и толковать знаки, которыми она написана. Написана же она на языке математики. Но ныне несомненна необходимость применения математических знаний и математического мышления врачу, лингвисту, историку, и трудно оборвать этот список, настолько важно математическое образование для профессиональной деятельности в наше время. Следовательно, математика и математическое образование нужны для подготовки к будущей профессии. Для этого необходимы знания из алгебры, математического анализа, теории вероятности и статистики.

Ещё одной важнейшей причиной нужды человечества в математике является воспитание в человеке способности понимать смысл поставленной перед ним задачи, умение правильно, логично рассуждать, усвоить навыки алгоритмического мышления. Каждому надо научиться анализировать, отличать гипотезу от факта, критиковать, понимать смысл поставленной задачи, схематизировать, отчётливо выражать свои мысли и т. п., а с другой стороны - развить воображение и интуицию (пространственное представление, способность предвидеть результат и предугадать путь решения и т. д.). Иначе говоря, математика нужна для интеллектуального развития личности. В 1267 году знаменитый английский философ Роджер Бекон сказал: ``Кто не знает математики, не может узнать никакой другой науки и даже не может обнаружить своего невежества."

Военная безопасность, экономическая и технологическая независимость страны зависят от математической грамотности ее граждан, причем основной массы, а не элитной группы. Трудно переоценить важность математики, математической образованности и математической культуры в современном мире. Вся современная наука пронизана математическими методами и математическими идеями.

Плохое математическое образование нарушает основные права гражданина, в частности право на свободный выбор профессии. Людьми, не знающими, что такое математическое доказательство, математическое рассуждение, легко манипулируют бесстыдные политики, а также финансовые воротилы и криминальные авторитеты через контролируемые ими СМИ. Математически необразованные люди готовы покорно следовать за любым лжепророком, с восторгом внимают бесноватым ясновидящим и малограмотным астрологам. Математически малограмотные руководители государств, крупных промышленных и финансовых корпораций, окруженные недостаточно математически образованными советниками и консультантами, представляют сегодня огромную опасность для человечества. Они не способны системно мыслить, не могут просчитать даже ближайшие последствия своих действий, которые все чаще и чаще приводят к военным конфликтам, экономическим кризисам, финансовым потрясениям, экологическим и гуманитарным катастрофам, очень быстро теряющим локальный характер.

Математическое моделирование должно стать обязательным этапом, предшествующим принятию любого ответственного решения. Достижения советско-российской математической науки и математического образования общеизвестны и общепризнанны. Именно они стали основой многих реальных успехов России советского периода. Российская математическая школа оказала серьезное влияние и на развитие мировой науки и образования во второй половине ХХ века. Ее учеников можно встретить во всех сколько-нибудь крупных научных центрах планеты. Но сегодня мы с горечью наблюдаем значительное снижение математической образованности нашего общества, падение его математической культуры. Многочисленные так называемые инновации разрушают традиции российского образования, предлагая в качестве ориентиров худшие западные образцы. Экономическая разруха, ставшая основным признаком происходящих в нашей стране реформ, отодвинула проблемы образования на последнее место. В самой же системе образования в самом тяжелом положении оказалась именно математика, как предмет, плохо соответствующий рыночной идеологии. В последнее время идет постоянное сокращение часов на математические предметы, уменьшение и упрощение программ. Практически не издается современная научная литература по математике, без которой невозможно воспитание специалистов высшей квалификации. Продолжающаяся эмиграция и полуэмиграция ведущих ученых и преподавателей, а теперь и лучших учащихся значительно ускоряют этот процесс распада.

Обеспокоенность состоянием математического образования в России выражают сегодня многие зарубежные ученые. Российское математическое образование было и все еще остается образцом для всего мира, и его разрушение может стать началом разрушения математического образования всего цивилизованного человечества.

Математика - это феномен общемировой культуры, в ней отражена история развития человеческой мысли. Разрушая математику, математическое образование, мы разрушаем общечеловеческую культуру, уничтожаем историю человечества. Всеобщая компьютеризация не только не уменьшила важность математического образования, но и, наоборот, поставила перед ним новые задачи. Снижение уровня математической образованности и математической культуры общества может превратить человека из хозяина компьютера в его прислугу и даже раба.

В процессе познания действительности математика играет все возрастающую роль. Сегодня нет такой области знаний, где в той или иной степени не использовались бы математические понятия и методы. Проблемы, решение которых раньше считалось невозможным, успешно решаются благодаря применению математики, тем самым расширяются возможности научного познания. Современная математика объединяет весьма различные области знания в единую систему. Этот процесс синтеза наук, осуществляемый на лоне математизации, находит свое отражение и в динамике понятийного аппарата. Чтобы человечество развивалось, причем развивалось плодотворно, нужны не только «лучшие умы», но и свежие идеи. А для этого необходимы креативные люди с необычным мышление, широким кругозором, гибким умом. Чтобы все это было в человеке, нужно чтобы он совершенствовал себя. Математика заставляет нас думать, анализировать. В процессе поиска информации для приготовленного мною сообщения я нашла один интересный сайт. На нем люди разного возраста, образования, мировоззрения делились своими мнениями о математике, а именно: оставляли свои голоса за и против математики, за любовь или ненависть по отношению к ней. Вот что написал один из участников обсуждения: «В математике нет лжи. Все формулы и теоремы имеют строгое доказательство. Математика развивает способность к логическому мышлению, что позволяет человеку жить интересно и никогда не скучать. Прочитал массу учебников по высшей математике. Благодаря изучению высшей математики приобретается философский аналитический ум и способность к самостоятельному мышлению». Вывод из этого можно сделать такой: для развития цивилизации необходимо развитие человеческого интеллекта. Это возможно благодаря «философскому аналитическому уму и способности к самостоятельному мышлению», что достигается в результате «разминки мозга».

Математика в жизни человека

Вам приходилось слышать такое выражение: математика - страна без границ? Эта фраза о математике имеет под собой очень веские основания. Математика в жизни человека занимает особое место. Мы настолько сроднились с ней, что попросту не замечаем ее.

А ведь с математики начинается наша жизнь. Ребенок только родился, а первые цифры в его жизни уже звучат: рост, вес. Малыш растет, не может выговорить слово "математика", а уже занимается ею, решает небольшие задачи по подсчету игрушек, кубиков. Да и родители о задачах не забывают. Готовя ребенку пищу, взвешивая его, им приходится использовать математику. Ведь нужно решать элементарную задачу: сколько еды нужно приготовить для малыша, учитывая его вес.

В школе математических задач много и сложность их с каждым годом растет. Они не просто учат ребенка определенным действиям. Математические задачи развивают мышление, логику, комплекс умений: умение группировать предметы, раскрывать закономерности, определять связи между явлениями, принимать решения. Занятия математикой, решение математических задач развивает личность, делает ее целеустремленнее, активнее, самостоятельнее.

И после школы математика очень даже пригодится. Во время учебы в вузе, на работе и дома нужно постоянно решать задачи связанные с математикой. Какова вероятность успешной сдачи экзамена? Сколько денег нужно заработать, чтобы купить квартиру? Чему равна площадь поверхности стен вашего дома, и сколько нужно приобрести кирпича для утепления дома? Как правильно рассчитать, чтобы родилась девочка или мальчик? И тут на помощь придет математика. Она следует за человеком везде, помогает ему решать практические задачи, делает его жизнь намного удобнее.

Стремительно изменяется мир и сама жизнь. В неё входят новые технологии. Только математика и решение задач в традиционном понимании не изменяют себе. Математические законы проверены и систематизированы, поэтому человек в важные моменты может положиться на нее, решить любую задачу. Математика не подведет.

Национальный план действий на 2012-2016 годы по развитию функциональной грамотности школьников особое внимание уделяет таким базовым компетенциям, как грамотность в чтении, математике, и естествознании.

В чём же состоит цель математического образования?

    Подготовка в вуз.

    Подготовка к будущей профессии.

    Интеллектуальное развитие.

    Формирование мировоззрения.

    Ориентация в окружающем мире.

    Физкультура мозга.

Вот некоторые мотивировки относительно важности математического образования для личности.

Математика встречается и используется в повседневной жизни , следовательно, определенные математические навыки нужны каждому человеку. Нам приходится в жизни считать, например, деньги. Мы постоянно используем, часто не замечая этого, знания о величинах, характеризующих протяженности, площади, объемы, промежутки времени, скорости и многое другое. Все это пришло к нам на уроках арифметики и геометрии и сгодилось для ориентации в окружающем мире.

Математические знания и навыки необходимы практически во всех профессиях, прежде всего, конечно, в тех, что связаны с естественными науками, техникой и экономикой. Но несомненна необходимость применения математических знаний и математического мышления врачу, лингвисту, историку, и трудно оборвать этот список, настолько важно математическое образование для профессиональной деятельности в наше время. Следовательно, математика и математическое образование нужны для подготовки к будущей профессии . Для этого необходимы знания из алгебры, математического анализа, теории вероятности и статистики.

Философское постижение мира, его общих закономерностей и основных научных концепций также не возможно без математики. И потому математика необходима для формирования мировоззрения .

Математика должна способствовать освоению этических принципов человеческого общежития. Изучение ее призвано воспитывать в человеке интеллектуальную честность, объективность, стремление к постижению истины, она воспитывает также способность к эстетическому восприятию мира, красоты интеллектуальных достижений .

«Математику уже затем учить надо, что она ум в порядок приводит», - М.В. Ломоносов. Не только руки, ноги, тело требуют тренировки, но и мозг человека требует упражнений . Решение задач, головоломок, математических ребусов развивает логическое мышление, скорость реакции. Недаром говорят, что математика – это гимнастика ума.

Учитель математики КГУ «Кокпектинская СОШ» Гермаш Е.А.

Смысл жизни - математические модели. Часть 1

1.Введение.

Около 1998 г. я попытался на основе известных мне элементов теории управления и системного анализа сформулировать некоторые ограничения жизненной стратегии в математических формулах. Еще ранее, в 1991-1994 гг. я читал курс лекций в Институте приборостроения по управлению в биологических и медицинских системах и ввел в эти лекции некоторые математические описания алгоритмов управления и жизненных стратегий. Элементы этих лекций я также ввел в настоящее эссе. Я, естественно, не претендовал на то, чтобы давать рецепты жизненной стратегии - для этого есть профессиональные философы, основатели философских и религиозных учений, пророки, мистики и др. Моя цель была значительно более скромная - посмотреть, как выглядят эти проблемы с математической стороны. Соответственно, и результат достаточно скромный - не следует искать прямого соответствия между математическими формулами и жизненными категориями -математика мало приспособлена для корректного описания этих категорий. Я добавил сюда ряд литературных отступлений, часть которых использовал в свое время для развлечения студентов.

2.Предварительные договоренности и ограничения.

Понятие «Cмысла жизни» многозначно - оно включает в себя объяснения ее биологического и социального механизмов (как?), ее причинно-следственных связей (почему?), ее целей (зачем?). Чаще всего при задавании этого вопроса он ассоциируется с последним (зачем?), т.е. понятия «смысл» и «цель» становятся в житейском смысле синонимами (хотя это совсем не так в математическом смысле). Основная часть дальнейшего изложения будет посвящена именно последнему пониманию - «Смысл жизни» как «Цель жизни».

Литературное отступление 1.

<<Ситуация очень схожа со сценой из «Фауста» Гете - при попытке перевода Библии на немецкий язык Фауст с первых же строк сталкивается с затруднением: «В начале было Слово». Дело в том, что в древнееврейском и древнегреческом (повидимому, Библию Фауст переводил с одного из этих классических языков, т.е. с подлинника или «Септуагинты») эта строка читается по-разному и в нее вкладывается многозначный смысл.

В древнегреческом это «Логос» - понятие включает в себя космический разум Вселенной, Главную Идею и многое другое. Этому понятию ближе всего перевод «Созидающая Мысль». Наиболее четкое изложение понятия - у Платона. Верховное существо мыслится как главный архитектор Вселенной.

В древнееврейском это в одном из вариантов «Каббала» - для мудреца-каббалиста возможность именно «Словом» буквально создавать миры - это абсолютная истина - надо только правильно произнести, со всеми придыханиями и ритуалами. В отличие от древнегреческого здесь «Слову» придается мистическое значение непосредственного созидания (кстати, исторически это предшествует понятию «Логоса»). Верховное существо мыслится как главный мастер - демиург, созидающий Вселенную.

При попытке найти немецкий аналог этого понятия Фауст перебирает понятия «Слово», «Мысль», «Дело» (в русском переводе, а на немецком еще и «Воля» - весьма важное добавление).

Вполне очевидно, что в понятии «Смысла жизни» имеются все эти варианты - и главной идеи, и главной мысли, и главного дела, а также главной цели и воли к ее достижению, а кроме того, для эзотериков (посвященных) - также и мистическое понимание.>>

Из вышеизложенного ясно, что “словам ведь соответствуют понятья” (тоже из “Фауста”) и если мы хотим поставить наше исследование на научную почву, то для каждого вполне очевидного (в житейском смысле) слова нужно определить понятие, которое мы имеем в виду, из множества возможных понятий, соответствующих данному слову. Витгенштейн определяет процесс ассоциации между словом и понятием как «языковую игру »: «Весь процесс употребления слов в языке можно представить и в качестве одной из тех игр, с помощью которых дети овладевают родным языком. Я буду называть эти игры “языковыми играми” и говорить иногда о некоем примитивном языке как о языковой игре».

Соответствие между словом и понятием проще всего, хотя и не очень наглядно, можно сделать на математическом уровне - на уровне моделей. Абстрактные математические модели, разумеется, будут гомеоморфными по отношению к описываемым явлениям жизни, но не изоморфными, т.е. модель есть подобие жизни, но жизнь не есть подобие модели. Поскольку мы исследуем понятие “Цели”, то в модели для нас главным будет ее прогностическое значение - если прогноз, сделанный по модели, позволяет правильно спланировать траекторию движения, стратегию и тактику поведения, то эту модель будем считать удовлетворительной. Поэтому наиболее частое возражение - это математика, а в жизни все не так - оказывается несостоятельным - модель не претендует на полноту описания, а служит только для прогноза.

Описания явлений в терминах и категориях культуры и нравственности представляют собой, по существу, перечень ограничений, накладываемых на модели поведения, которые могут также быть описаны математически, но являются более краткими, хотя и менее формально точными. Степень соответствия этих описаний реальным жизненным явлениям в смысле прогностическом примерно такова же, как у чисто математических моделей, то есть эти описания вполне прагматичны.

Еще одно существенное ограничение: чтобы не умножать сущностей сверх необходимого (Pluralitas non est ponenda sine necessitate - бритва Оккама), мы не будем привлекать при описании математических моделей Создателя, пришельцев, четвертое измерение, ауру, мидихлориан и Силу (из «Звездных войн») и т.п. (перечень можно продолжить до бесконечности).

Замечание по поводу списка литературы - перечень источников слишком велик для традиционного списка печатных изданий (от Геродота и Гегеля до Стругацких и Спинозы); он ориентирован на Интернет-источники в on - line - запрос в любом поисковике по фамилии автора дает ссылки на десятки сайтов.

3.Формирование иерархии целей на уровне индивидуума.

В кибернетике основным признаком живого организма считается свойство гомеостаза, т.е. удержания в заданных пределах основных параметров жизнедеятельности за счет адаптивного поведения.

Электромеханическая модель гомеостатической системы - известные черепашки Уолтера, удерживающиеся на краю стола, математическая модель дана, в частности, у Эшби:

Так как ступенчатые функции меняются скачками, то аналитическое интегрирование этих дифференциальных уравнений невозможно, но тем не менее эти уравнения однозначно определяют поведение системы, если заданы начальные условия (состояние системы), и решение с любой степенью точности может быть найдено с помощью численных методов.

Живые системы, определяемые уравнениями гомеостаза, соответствуют организмам, полностью осуществляющим адаптацию за счет безусловных рефлексов. Программа адаптации при этом полностью записана на генетическом уровне (в структуре ДНК). Объем информации, которую организм может передать своим потомкам, полностью определяется объемом генома.

Литературное отступление 2.

<< Рассмотрение организма как машины имеет очень давнюю традицию, хотя принято связывать эту аналогию с 18-м веком (веком Просвещения). Любопытно, что уже в то время делались небезуспешные попытки ввести для простейших организмов - машин понятия нравственности. У Потоцкого в «Рукописи, найденной в Сарагосе» один из героев (математик) рассуждает, имеет ли моллюск в раковине понятие о добре и зле. Первичная дихотомия добра и зла у него отождествляется с дихотомией «съедобно - несъедобно»: моллюск открывает свою раковину и поглощает съедобную частицу или закрывает раковину и отвергает несъедобную. Рост сложности системы (и, соответственно, усложнение нравственности) достигается за счет увеличения числа возможных выборов поведения. Таким образом, по Потоцкому, моллюск оперирует 2 понятиями, а гений на уровне Исаака Ньютона - 10 000 понятий - вот пример чистой математической индукции, без учета качественного изменения системы.>>

Следующая ступень более совершенного адаптивного поведения связана с введением понятия условного рефлекса. Моделирование условного рефлекса проводилось и для черепашек Уолтера, но наиболее популярной математической моделью систем с условным рефлексом является перцептрон Розенблата. Основная идея перцептрона - возможность изменения коэффициентов обратных связей и распределения ступенчатых функций из уравнений гомеостаза в процессе обучения. Результаты обучения (положительные или отрицательные) служат для подкрепления или ослабления обратных связей отдельных блоков системы. Тогда процесс в гомеостатической системе определяется не только ее начальным состоянием, но и процессом ее обучения, т.е. структура системы адаптируется к среде в процессе обучения. Объем информации, который передается потомкам, при этом существенно превышает объем генома.

Основной недостаток управления на этих 2 этапах - это запаздывание управления - управление использует только информацию о текущем состоянии окружающей среды, при изменении параметров среды между получением новой информации и формированием нового управления имеется временной лаг, что снижает шансы организма на выживание.

Следующая ступень совершенствования адаптивного поведения - построение организмом модели окружающей среды, прогнозирование по модели будущего состояния среды и планирование с помощью этой модели своего поведения. Здесь мы впервые сталкиваемся с понятием цели , так как планирование подразумевает решение некоторой задачи. Вопрос осознания этой задачи здесь ключевой, так как без постановки этой задачи нет и понятия цели. Является ли понятие цели присущим только человеку, или и другим высшим животным - это вопрос дискуссионный и не имеет принципиального значения для нашего исследования.

Математическая модель целенаправленных систем описана в общей теории систем (Месарович и Такахара) следующим образом:

причем пара (х, y ) принадлежит S тогда и только тогда, когда y является решением задачи принятия решений, задаваемой элементом х . Множество входных воздействий X называется множеством решений, множество Y - множеством выходных величин, которые могут получиться в ответ на входные воздействия х. Усложнение математической модели целенаправленных систем приводит к понятиям задачи удовлетворения, модели объекта управления и системы принятия решений. Для описания и анализа этих моделей требуется более глубокое знание теории множеств. При этом любую систему, преобразующую входы в выходы, можно описать как систему принятия решений. Феноменологический и целенаправленный подходы здесь зависят от того, на что направлен интерес исследователя. Мы, естественно, будем применять целенаправленный подход.

Если ввести в уравнения системы множество ограничений N , связанных с нравственными и культурными табу, уравнения примут вид:

С появлением понятия цели связано введение целевой функции, поиск экстремума которой является задачей управления. Заметим, что при адаптивном управлении достижение экстремума целевой функции необязательно. Целевая функция представляет функционал типа

t - время, Т - временной интервал, на котором производится интегрирование (например, длительность жизни). Поиск экстремума целевой функции производится на пространстве входных переменных x n . Решение с любой степенью точности по достижению экстремума целевой функции находится численными методами.

Значение Ф соответствует степени удовлетворения совокупности некоторых потребностей человека - как материальных, так и эмоциональных.

Здесь традиционно различают 2 типа задач: задачи целевого планирования и задачи оперативного управления (хотя на современном уровне вычислительной техники грань между этими 2 типами задач смазана, так как решение задач целевого планирования может при достаточно большой вычислительной мощности осуществляться в реальном времени).

Для задач целевого планирования в зависимости от вида целевой функции используются:

линейное программирование (Канторович) - требуется найти максимум функции

2. динамическое программирование (Беллман) - типовая задача, решаемая этим методом - задача о коммивояжере: имеется n +1 городов A 0 , A 1 ,… A n с заданными между ними расстояниями d ij ; требуется выбрать такой маршрут передвижения A 0 , A i 1 , A i 2 ,… A in , A 0 , при котором суммарный путь минимален;

3. эвристическое программирование (Нюэлл, Шоу, Минский) - при этом информация об объекте управления неполна и используются, в частности, экспертные системы принятия решений;

4. игровые методы , применяемые для конфликтных ситуаций и стохастических объектов управления - эта группа методов, в частности включает так называемые «деловые игры».

Для задач оперативного управления применяются различные методы автоматического регулирования в реальном времени:

1. Для детерминированных систем методы поиска экстремума: метод Гаусса-Зайделя, метод наискорейшего спуска (по максимуму градиента);

2. Для стохастических систем - корреляционно-экстремальный метод (Миллер, Тарасенко, Мелик-Шахназаров, Маркатун) - при этом определение оптимальных координат местоположения или их производных осуществляется путем отыскания экстремума корреляционной функции R ij или ее разновидностей.

Разумеется, приведенные перечни методов решения задач целевого планирования и оперативного управления далеко не полны и включают лишь наиболее традиционные и хорошо освоенные методы.

Резюмируем вышеизложенное: цель жизни в традиционной трактовке моделируется как нахождение максимума целевой функции Ф (счастья) за время жизни Т (заметим, что Т - непостоянно и зависит от стратегии поиска). Здесь мы впервые ввели в наше исследование понятие счастья. Оно (продолжая языковую игру опять же по Витгенштейну) является весьма сложным и, строго говоря, не может быть полностью раскрыто. Однако, чтобы можно было двигаться дальше, примем в нашей языковой игре, что в формуле для Ф могут быть учтены с определенными весовыми коэффициентами как материальные, так и эмоциональные стимулы удовлетворения индивидуума. Математизацию понятий нравственности и эмоций рассмотрим в разделах 8 и 9 настоящего исследования.

Поскольку в целевой функции Ф должны быть учтены со знаком “ - “ несчастья и страдания жизни, то результат Ф может быть и отрицательным. При пессимистическом подходе (если весовые коэффициенты страданий принимаются более высокими, чем весовые коэффициенты удовольствий) наиболее выгодная стратегия - полное отсутствие управления (действий), чтобы не увеличивать количество страданий (идеал при этом - нирвана). Легко понять, что при такой стратегии существование и индивидуума, и социума невозможны. Поэтому в дальнейшем не будем рассматривать такую стратегию, так как результат тривиален.

Литературное отступление 3.

<<Религиозные мыслители рассматривают Т , как величину, стремящуюся к бесконечности (с учетом загробного существования). Тогда стратегия поиска целевой функции приобретает совершенно другой вид. Приведем паскалевское доказательство существования бога, основанное на теории вероятностей:

Стратегия атеиста - Т1 = Т - время земной жизни, конечная величина, Ф1 - количество благ, приобретаемых человеком в земной жизни, возможный выигрыш - Ф1 - не зависит от вероятности существования бога р б .

Стратегия верующего - Т2 -> “бесконечность” ( длительность загробного существования) , Ф1 -> 0 - нулевое количество благ, получаемое верующим в земной жизни при праведном поведении, Ф2 -> “бесконечность” (бесконечное количество благ, получаемое верующим в загробной жизни, т.е.вечное блаженство), возможный выигрыш - Ф2 * р б .

Сравнивая возможные выигрыши, получаем, что стратегия верующего дает больший выигрыш при сколь угодно малом р б . Заметим, что если мы попытаемся определить р б по принципу научного эксперимента, то эта вероятность должна определяться как отношение числа удачных (подтверждающих существование бога) экспериментов к общему числу экспериментов. Вся проблема в том, что научная достоверность удачных экспериментов недоказуема из-за принципиально различной трактовки их результатов наблюдателем-атеистом и религиозным наблюдателем. >>

Поиск максимума Ф рассматривается как стратегическая задача долговременного планирования, или тактическая задача оперативного управления, причем имеет место логический парадокс - вид целевой функции определяется самим субъектом, осуществляющим стратегию поиска, при этом утрачивается объективность выбора - правильность может быть оценена лишь сторонним наблюдателем (или группой наблюдателей, представляющих социум). Какой из видов счастья объективно является оптимальным - здоровье и долголетие, богатство, власть, социальный престиж, мудрость, самоудовлетворение от наркотиков, алкоголя и разврата - нельзя определить на уровне индивидуума.

Литературное отступление 4.

<< Одно из древнейших доказательств субъективности определения счастья мы находим в рассказе о Солоне и Крезе (Геродот, Плутарх, Ксенофонт). Лидийский царь Крез, накопивший несметные богатства, показал их афинскому мудрецу Солону и спросил, кто, по его мнению, является счастливейшим человеком на земле. Солон привел в пример афинских граждан - одни пали смертью героев на войне за отечество, другие после праведной жизни умерли в святилище богини. Крез с возмущением спросил его - не знает ли он счастливых среди живущих, на что Солон сказал, что объявлять счастливым того, кто еще живет - то же, что объявлять победителем в беге того, кто еще не закончил дистанцию. Через некоторое время царство Креза было разорено завоевателями, а сам он приговорен к смерти на костре и на себе ощутил справедливость суждения Солона. Здесь в основе понимания счастья две системы ценностей: у Креза - материальные блага; у Солона - авторитет в обществе на основе высокого уровня Платоновского «тимоса». «Тимос» понимается как врожденное чувство справедливости, порождающее жажду общественного признания (Фукуяма).>>

Литературное отступление 5.

<<Насколько далеко мы ушли от понимания счастья во времена Солона и Креза, покажем на следующем отрывке из Кристофера Лога (цитируется по сказке Стругацких):

“Вы спрашиваете:

Что считаю

Я наивысшим счастьем на земле?

Две вещи:

Менять вот так же состоянье духа,

Как пенни выменял бы я на шиллинг,

Юной девушки

Услышать пенье

Вне моего пути, но вслед за тем,

Как у меня дорогу разузнала”.

Возможно, по парадоксальности этот отрывок ближе всего к современному пониманию счастья.

Остается добавить следующую цитату из Стругацких:

Разве такие вещи алгоритмизируются?!”

Но Стругацкие - не Святое Писание, и мы продолжим это безнадежное дело.>>

Источник парадокса при выборе целевой функции - построение иерархии целей по методу математической индукции: для решения малой тактической задачи (например, проведение коммерческой операции) определяется тактическая цель низшего уровня (получение определенной суммы денег), тактическая задача следующего уровня (достижение благосостояния) определяет методом индукции следующую цель (полное финансовое благополучие), следующий уровень (завоевание на этой основе власти в социуме) выдвигает следующую тактическую цель. Возникает иллюзия, что метод индукции применим и для человеческой жизни в целом. Однако здесь вступает в силу теорема Геделя: те задачи, которые формулировались внутри отдельных отрезков человеческой жизни, не могут быть отдельным человеком сформулированы для человеческой жизни в целом. Для объективной постановки задачи оптимизации целевой функции нужно перейти на следующий системный уровень - рассматривать не отдельного индивидуума, а социум.

4.Формирование целей на уровне социума .

В отличие от предыдущего раздела системой, для которой решаются задачи выживания, адаптации и оптимизации целевой функции, является не отдельно взятый индивидуум, а социум или его часть. На разных стадиях развития частью социума, которая для себя ставила и решала эти задачи, были род (семья), племя, народ (этнос), человечество в целом (последнее пока только в перспективе).

Выбор целевой функции и здесь достаточно произволен, но правильность этого выбора определяется на обозримых исторических отрезках по состоянию данной части социума. Стратегией управления для социума является, с одной стороны, некоторый набор ограничений, задающих правила социального поведения индивидуумов (нравственность, религия, мораль, культурные табу, юрисдикция и др.), с другой стороны, объединяющая часть социума идея, в частности, национальная идея (мировое господство, свобода и неограниченные возможности развития личности индивидуумов, гарантированное блаженство в загробной жизни, улучшение расы и создание сверхчеловека, высокий уровень благосостояния для всех и пр.).

О правильности выбора стратегии можно судить в историческом ракурсе, на основании анализа, какова стабильность социума при выбранной стратегии, какова сумма счастья и несчастья, получаемых членами социума. Заметим, что при анализе правильности стратегии мы должны опять-таки выйти за пределы анализируемой системы и рассматривать уже систему, включающую в качестве составных частей социум и окружающую среду (планету, а в перспективе и весь космос).

Ретроспективный (исторический) анализ правильности стратегии социума на отдельных исторических этапах имеет еще и то ограничение, что мироощущение индивидуумов на различных этапах цивилизации несопоставимо, а стало быть, определение счастья и несчастья члена социума невозможно. Для нас непостижимо мировосприятие древнего эллина, китайца эпохи Конфуция, ацтеков и майя. Попытки реконструкции этого мироощущения имеют литературную, но не объективную ценность.

Поэтому при выработке национальной идеи или кодекса нравственности и морали можно руководствоваться только явно отрицательными примерами (недолговечное существование Третьего Рейха, неудачная попытка построения коммунистического общества в России и др.).

Максимум того, что может сделать индивидуум в социуме при планировании своей личной стратегии:

понять целевую функцию своей части социума и привести свою личную стратегию в соответствие с ней (изменение части своей личности) - конфуцианский подход,

найти для себя часть социума, целевая функция которой более соответствует личной стратегии, стать членом этой части социума (и перенести все неудобства и дополнительные усилия, необходимые для смены окружения) - индивидуалистический подход,

изменить целевую функцию своей части социума, приведя ее в соответствие со своей личной целевой функцией (преобразование социума с минимальными шансами на успех) - революционный подход.

Саморегулирующиеся системы .

Существует иллюзия, что достаточно установить правила игры и при достаточно хороших правилах система сама будет развиваться в «хорошем» направлении и приведет общество в процветающее состояние. В наше время наиболее показательна здесь идея рыночной экономики, которая сама все отрегулирует и улучшит экономические показатели общества. Это можно сравнить с влиянием эволюции на животный мир планеты. Эволюция действительно эффективно отсеивает менее приспособленные организмы, остается только выяснить, были бы удовлетворены ее результатами динозавры и неандертальцы. Кстати, мозг неандертальца был больше по объему мозга современного человека, так что, возможно, вымирание неандертальцев закрыло человечеству путь к более интеллектуальному обществу.

5.Информационная модель управления.

Еще одно замечание касается способности индивидуума к выработке правильной тактики и стратегии управления. Информационная модель управления, разработанная Винером, определяет условие оптимального управления как:

H (X )>= H (Y ) (5),

Приведенное соотношение известно как закон необходимого разнообразия и в переводе на обыденный язык означает, что информационные возможности управляющего индивидуума должны быть не меньше, чем информационное богатство управляемого объекта, т.е. оптимальное управление при неполной информации об объекте невозможно.

Следовательно, при выработке жизненной стратегии необходимо учитывать:

Принципиальную неполноту информации, которую может собрать индивидуум в течение жизни.

Необходимость учета совокупной информации, накопленной в социуме.

Важность информационных фильтров для усвоения полезной для управления информации и отсева вредной.

Выбор за индивидуумом. Объективность выбора повышается при понимании различных сторон проблемы - личных возможностей, образа жизни в отдельных частях социума, перспектив развития себя и социума, добровольном принятии ограничений, действующих в социуме (правил игры). Очевидно, что научное понимание проблемы построения жизненной стратегии резко сужает возможность личного свободного выбора жизненных альтернатив.

Заметим, что ценность информационного богатства для управления была практически положена в основу отбора чиновников еще в Древнем Китае — для назначения на пост чиновник должен был сдавать экзамены по классической философии (по Конфуцию), по литературе, математике (включая геометрию). Результатом квалифицированной работы чиновников были успехи в строительстве (Великая Китайская стена), орошении, создании гигантского флота и прочих отраслях, где Древний Китай намного опередил окружаюшие страны.

Литературное отступление 6.

<<Информационная модель Винера имеет достаточно простой житейский аналог, который по-латыни формулируется так:

Ubi nil vales, ibi nil velis.

Там, где ты ничего не можешь, там ты ничего не должен хотеть - т.е. если твое информационное богатство значительно меньше информационного богатства объекта, ты не можешь управлять этим объектом. Покорись и не строй планов.

Сенека, из писем к Луцилию:

Ducunt fata volentem, nolentem trahunt”.

«Покорного судьба ведет, непокорного тащит».>>

Подход философа-стоика сформулирован для статической модели, когда функции H (X ) и H (Y ) являются постоянными в процессе решения. Однако, на практике чаще используется динамический подход - когда управляющий индивидуум проводит исследование структуры управляемого объекта. При этом повышается информационное богатство управляющего индивидуума H (X ) и становится возможным выполнение условие успешного управления (5).

Правда, возможен и другой вариант - когда управляющий индивидуум вместо повышения своего информационного богатства H (X ) уменьшает информационное богатство объекта H (Y ), т.е. переделывает управляемый объект с целью устранения помех для управления (например, уничтожает политическую оппозицию) - диктаторский подход.

Только это уже будет не тот объект и не тот управляющий субъект, а управление превращается в подавление.

Информационная модель управления приводит к задаче отбора управляющих субъектов, т. е. к выбору между классической демократией типа «один человек — один голос» и меритократией (правление достойных, т. е. в нашем случае наиболее квалифицированных в искусстве управления экспертов). Частично такая система двухступенчатых выборов реализована в США. При переходе к двухступенчатым выборам неизбежно встает вечный вопрос: «кто охраняет охранников» или « Quis custodiet ipsos custodes ?». Система отбора экспертов — это ключевой вопрос, но не безнадежный. Сообщество академических ученых и управленцев вполне способно сформировать компетентную экспертную группу.

6. Зависимость стратегии от возраста этноса и индивидуума

В предыдущих разделах молчаливо предполагалось, что личная стратегия индивидуума принимается им где-то в начале жизни и затем не меняется в течение всей жизни, т.е. индивидуум принимает “правила игры” и следует им (вид функционала F (x 1 , x 2 ,… x n ) не меняется в течение жизни Т ). Для стратегии 1 (конфуцианский подход) это возможно лишь при условии воспитания индивидуума в “правильном” духе, что характерно для сравнительно молодых этносов. Примеры: древняя Спарта, древний Китай, самураи Японии, рыцарство в средневековой Европе. Девиз рыцаря “без страха и упрека” (chevalier sans peur et sans reproche ) - “делай, что должен, и пусть будет, что будет”. Даже в условиях одного замкнутого типа цивилизации такой тип стратегии редко полностью выдерживался в течение жизни индивидуума. Например, Сократ был воспитан как воин, в молодости был образцовым воином, затем стал философом. Социальная динамика (социальные “лифты”) делала из рядовых рыцарей королей, из рядовых самураев - сёгунов; при этом стратегия поведения коренным образом менялась от стратегии (1) (конфуцианский подход) к стратегии (2) (индивидуалистический подход). Вместо рыцарей “без страха и упрека” появлялись фрилансеры (freelancers ) - вольные копейщики, которые искали свое счастье, выбирая на короткое время очередного сюзерена. В настоящее время фрилансеры (правда, совершенно в другом смысле) - одна из основных групп активного населения, особенно в творческих, креативных профессиях - программисты, дизайнеры и пр. Вместе с тем, большую группу составляют клерки, верные “корпоративному” духу, т.е. следующие конфуцианской этике. Такова общая динамика групп, характерная для постиндустриального общества.

С другой стороны, такая динамика характерна и для развития отдельной личности. В начале жизненного пути индивидуум, в основном, воспитывается и принимает идеологию жизни “по правилам”; по мере взросления и усвоения все большего объёма информации о своих возможностях (познание себя) и о внешней среде (познание жизни) (см. модель управления Винера в предыдущем разделе) усиливаются индивидуалистические или революционные черты; в конце жизни, когда силы иссякают, он вновь переходит к конфуцианскому стилю жизни.

С учетом изменения выбранной стратегии в течение жизни формула для целевой функции приобретает вид:

Где k +1 - число стратегий, используемых индивидуумом в течение жизни;

F i - функционал, определяемый видом стратегии i .

Литературное отступление 7 (и последнее).

<<” Si jeunesse savait , si vieillesse pouvait ”(Этьен, 1594 г.) - “Если бы молодость знала, если бы старость могла”. >>

Все-таки довольно точные аналогии между математическими формулами и житейской мудростью существуют, надо только покопаться.

культура искусство общество наука смысл жизни, целевое планирование, информационная модель