Operational-tactical missile system "Iskander. Iskander - one of the most advanced missile systems in the world Launchers of the Iskander missile system

"Iskander" (complex index - 9K720, according to the classification of the US Defense Ministry and NATO - SS-26 Stone, English Stone) - a family of operational-tactical missile systems (OTRK): Iskander, Iskander-E, Iskander-K, Iskander-M. The complex was developed in the Kolomna Design Bureau of Mechanical Engineering (KBM). The Iskander was first publicly presented in August 1999 at the MAKS aerospace show.

Story

The development of the Iskander OTRK was started in accordance with the Decree of the Central Committee of the CPSU and the Council of Ministers of the USSR dated December 21, 1988 No. 1452-294 “on the start of development work on the creation of the Iskander OTRK”, as a result, including the personal efforts of the chief KBM designer S. P. Invincible, who proved to the Military-Industrial Commission of the Presidium of the Council of Ministers of the USSR the need to create a replacement for the Oka OTRK missile system, which is not subject to the provisions of the INF Treaty with the United States.

On October 11, 2011, the first stage of testing the updated Iskander-M missile system with new combat equipment was completed. The 9M723 missile of the Iskander-M complex is equipped with a new, correlation guidance system.

Main characteristics

Purpose of the complex

Designed to engage combat units in conventional equipment of small and area targets in the depth of the operational formation of enemy troops. It is assumed that it can be a means of delivery of tactical nuclear weapons.

Most likely targets:

    means of fire damage (missile systems, reactive systems salvo fire, long-range artillery)

    anti-missile and air defense

    airplanes and helicopters at airfields

    command posts and communication centers

    the most important objects of civil infrastructure

The composition of the complex

TZM 9T250-1 complex "Iskander-M" at the dress rehearsal of the Victory Parade-2010 in Moscow.

The complex includes six types of vehicles (51 units per missile brigade):

    Self-propelled launcher (SPU) (9P78-1) 12 pcs. - designed for storage, transportation, preparation and launch of two missiles at the target. Iskander can be made on the basis of a special wheeled chassis manufactured by the Minsk Wheel Tractor Plant (MZKT-7930). Full mass 42 t, payload 19 t, road/dirt road speed 70/40 km/h, fuel range 1000 km. Calculation 3 people.

    Transport-loading vehicle (TZM) (9T250 (9T250E)) 12 pcs. - designed to transport an additional two missiles. Made on the MZKT-7930 chassis, equipped with a loading crane. Full combat weight 40 tons. Calculation of 2 people.

    Command and staff vehicle (KShM) (9S552) 11 pcs. - designed to control the entire Iskander complex. Made on a wheeled chassis KAMAZ 43101. Radio station R-168-100KAE "Aqueduct". Calculation 4 people. Characteristics of KShM:

    maximum range of radio communication in the parking lot / on the march: 350/50 km

    task calculation time for missiles: up to 10 s

    command transmission time: up to 15 s

    number of communication channels: up to 16

    unfolding (clotting) time: up to 30 minutes

    continuous work time: 48 hours

    Machine regulations and maintenance (MRTO) - designed to check the on-board equipment of missiles and instruments, for routine repairs. Made on a KamAZ wheeled chassis. The mass is 13.5 tons, the deployment time does not exceed 20 minutes, the time of the automated routine check cycle of the on-board equipment of the rocket is 18 minutes, the calculation is 2 people.

    Information preparation point (PPI) (9S920, KAMAZ 43101) - designed to determine the coordinates of the target and prepare flight missions for missiles with their subsequent transfer to the SPU. PPI is interfaced with reconnaissance means and can receive tasks and assigned targets from all necessary sources, including from a satellite, aircraft or UAV. Calculation 2 people.

    Life support vehicle (MZhO) 14 pcs. - designed to accommodate, rest and eat combat crews. Made on a wheeled chassis KAMAZ 43118. The machine includes: a rest compartment and a household supply compartment. The rest compartment has 6 wagon-type beds with folding upper deck chairs, 2 lockers, built-in lockers, an opening window. The household supply compartment has 2 lockers with seats, a folding lifting table, a water supply system with a 300-liter tank, a tank for heating water, a pump for pumping water, a drain system, a sink, a dryer for clothes and shoes.

    A set of arsenal equipment and training aids.

Combat characteristics

    Circular error probable: 10-30 m (depending on the guidance system used); 5-7 m ("Iskander-M" with the use of a missile with a correlation seeker)

    Launch weight of the rocket: 3,800 kg

    Warhead weight: 480 kg

    Length 7.2 m

    Diameter 920 mm

    Rocket speed after initial trajectory: 2,100 m/s

    The maximum overload during the flight is 20-30G (the rocket maneuvers in flight both in height and in the direction of flight). Max Height trajectories - 50 km.

    Minimum target engagement range: 50 km

    Maximum target range:

    500 km Iskander-K (500 km from cruise missile R-500, according to some sources up to 700 km)

    280 km Iskander-E (export)

    Guidance: INS, GLONASS, Optical seeker

    Time to first rocket launch: 4-16 minutes

    Interval between launches: 1 minute (for 9P78 launcher with two missiles)

    Operating temperature range: -50 °C to 50 °C

    Service life: 10 years, including 3 years in the field

Head types

In normal gear:

    cassette with 54 non-contact fragmentation submunitions (triggered at a height of about 10 m above the ground)

    cassette with cumulative fragmentation submunitions

    cassette with self-aiming submunitions

    cassette volumetric detonating action

    high-explosive fragmentation (OFBCH)

    high-explosive incendiary

    penetrating (PrBCh)

    special (nuclear)

rockets

The Iskander complex includes two types of missiles: ballistic 9M723 and cruise missiles bearing the index 9M728.

The rocket of the 9M723 complex has one stage with a solid propellant engine. The trajectory of movement is quasi-ballistic (not ballistic, maneuvering), the rocket is controlled throughout the flight using aerodynamic and gas-dynamic rudders. Manufactured using technologies to reduce radar visibility (the so-called "stealth technologies"): small scattering surface, special coatings, small size of protruding parts. Most of the flight takes place at an altitude of about 50 km. The rocket conducts intensive maneuvering with overloads of the order of 20-30 units in the initial and final sections of the flight. The guidance system is mixed: inertial in the initial and middle sections of the flight and optical (using the GOS developed by TsNIIAG) in the final section of the flight, which achieves a high hit accuracy of 5-7 m. It is possible to use GPS / GLONASS in addition to the inertial guidance system. There are several modifications of the rocket that differ in warhead and telemetry.

On September 20, 2014, during the Vostok-2014 command-and-staff exercises, firing from the Iskander-M missile system with a 9M728 cruise missile was performed for the first time. The launches were carried out by the 107th separate missile brigade (Birobidzhan). Developer and manufacturer - OKB "Novator". Chief designer - P.I. Kamenev. Rocket tests were carried out from 05/30/2007. Firing range: maximum - up to 500 km.

Since 2013, the Russian Armed Forces are planning to supply missiles equipped with an electronic warfare system that provides missile cover in the final flight segment. This system includes means of setting passive and active jamming to surveillance and firing radars of anti-aircraft and missile defense the enemy, through noise and the release of decoys.

Options

Iskander-M - option for Russian armed forces, 2 missiles on launchers, the firing range in various sources varies from that declared for Iskander-E - 280 km - up to 500 km (it is not indicated with what type of warhead (warhead mass) the corresponding range is achieved). Flight altitude 6-50 km, most of usually runs at maximum height. Controllable throughout the flight. The trajectory is not ballistic, difficult to predict. The missile is made using the technology of low radar visibility and also has a radar absorbing coating and is a relatively small target in its natural physical size. Predicting a target in an early interception attempt is further complicated by heavy maneuvering during takeoff and descent to the target. When descending to the target, the rocket maneuvers with an overload of 20-30 units, descending at a speed of 700-800 m / s (these figures exceed or are on the verge of capabilities the best systems ABM / air defense of medium range), at an angle of about 90 degrees (in some cases, only the angle of attack is enough for the complete defenselessness of the attacked missile defense system, and even more so for air defense, especially short-range ones), so Iskander-M has a number of advantages over analogues, and high possibilities of not just hitting a target, but even means of protection in the form of modern systems PRO.

The missile carries a complex set of passive and active interference; when approaching the target, false targets and jammers are additionally fired. Sample M is additionally equipped with an electronic warfare system to disrupt the operation of the enemy's radar. All this also provides the missile with high combat effectiveness in comparison with simpler similar missiles.

Maneuvering at high altitude is provided by speed and aerodynamic rudders. Such maneuvering is not intensive, but imposes ultra-high demands on the reaction time for the interceptor (in a hundredth of a second, the missiles approach by tens of meters, the reaction time of one of the fastest missile defense systems is more than 5 seconds, as well as air defense systems from open sources). If the interceptor is kinetic, this also requires successful trajectory prediction with high accuracy. In order to successfully intercept a ballistic target with a high probability, previously developed before the non-ballistic Iskander complexes, it was early enough to detect a target of the appropriate size and speed, and, having predicted the trajectory, ensure interception. However, Iskander changes his trajectory. The Oka complex, the predecessor of Iskander, could change the target while maintaining a stable trajectory before and after the maneuver, thereby moving away from the interceptor, or at least reduced the effective protection zone, requiring time to recalculate the meeting point.

    Iskander-E - export version, firing range 280 km, warhead weight 480 kg. It is a simplified version of the Iskander-M. Rocket maneuvering at high altitude is provided by aerodynamic rudders and a flight speed of 2100 meters per second throughout the high-altitude flight. Satisfies the conditions of the Missile Technology Control Regime.

    Iskander-K - variant using cruise missiles, firing range 500 km, warhead weight 480 kg. The flight altitude of the rocket is about 7 meters when reaching the target, and not higher than 6 km, the rocket is automatically corrected all the time of the flight and automatically goes around the terrain. For the Iskander-K OTRK, R-500 cruise missiles with a range of 2000 km are also produced.

Combat use

There is no reliable information about the combat use of the Iskander complexes, however, there were reports refuted by the Russian military that the complex was used during the Georgian-South Ossetian armed conflict 2008.

According to Shota Utiashvili, head of the Analytical Department of the Ministry of Internal Affairs of Georgia, Russia used Iskander missile systems at facilities in Poti, Gori and the Baku-Supsa pipeline.

Mikhail Barabanov, an expert in the Moscow Defense Brief, points out that the Iskander complex was used at the base of a separate tank battalion in Gori. As a result of a direct hit of the warhead in the weapons depot of the Georgian battalion, it was blown up. The author notes that this information is based on unverified sources. A Dutch commission investigating the death of RTL Nieuws cameraman Stan Storimans in Gori on August 12, 2008 determined that the journalist had been killed by a single 5mm steel ball. According to the BBC, the Dutch commission expressed an expert opinion that the Iskander was the carrier of the cluster munition, but the report did not indicate on what grounds such a conclusion was made. The Russian Foreign Ministry said that the data provided by the Dutch side is not enough to determine the type of carrier. Earlier, Human Rights Watch put forward another version, according to which the cause of the death of the Dutch journalist was RBC-250 aviation cluster bombs.

Deputy Chief of the General Staff of the Russian Armed Forces, Colonel-General Anatoly Nogovitsyn denied all reports of the use of Iskanders in Georgia, saying that the Iskander complex during the fighting in South Ossetia was not applied.

Politics

The Iskander operational-tactical missile system is a weapon capable of influencing the military-political situation in some regions of the world if the states located in them do not have an extended territory. Therefore, the issues of locating the Iskander complexes, as well as their export supplies, are the subject of political consultations between the countries.

On November 5, 2008, Russian President Dmitry Medvedev, addressing the Federal Assembly, said that the response to the American missile defense system in Poland would be the deployment of Iskander missile systems in the Kaliningrad region. But after the US refused to deploy missile defense in Eastern Europe Medvedev said that in response, Russia would not place this complex in the Kaliningrad region. Due to the escalation of tension between Russia and the United States, at the end of 2011, the issue of deploying the Iskander OTRK in the Kaliningrad region remained open. On November 23, 2011, Russian President Dmitry Medvedev again announced that Russian Federation is ready to deploy the Iskander complex if the NATO countries continue to deploy the missile defense system in Europe.

On January 25, 2012, it became known that the first division of the Iskander tactical missile systems in the Kaliningrad region would be deployed and put on combat duty by Russia in the second half of 2012. However, on the same day, the Ministry of Defense of the Russian Federation denied this information, stating that there was no decision on the approval of the staff of the military unit Baltic Fleet, equipped with Iskander missile systems, was not accepted by the General Staff. December 15, 2013 German media, citing sources in the security structures, reported that Russia had deployed Iskander missile systems in the Kaliningrad region. This is evidenced by satellite images showing at least ten Iskander-M complexes deployed in Kaliningrad, as well as along the border with the Baltic countries. The deployment may have taken place during 2013.

The complexes were transferred to Kaliningrad region during military exercises and a sudden check of the combat readiness of the Western Military District and Northern Fleet in December 2014 and March 2015.

In 2005, it became known about plans to supply Iskander complexes to Syria. This caused a sharp negative reaction from Israel and the United States. During a visit to Israel, Russian President Vladimir Putin announced a ban on such supplies to prevent upsetting the balance of power in the region. In August 2008, during a visit to Moscow, Syrian President Bashar al-Assad expressed his readiness to deploy complexes in Syria.

On February 15, 2010, the President of the unrecognized Transnistria, Igor Smirnov, spoke in favor of deploying Iskanders in the republic in response to plans to deploy US missile defense systems in Romania and Bulgaria.

In service

Russia (as of February 2016): 6 brigades (72 SPU)

    26th missile brigade of the Western Military District (Luga) - the re-equipment of the brigade began in 2010 with the delivery of 6 complexes (PU), in 2011 the formation of the first brigade (12 launchers) was completed;

    107th Missile Brigade of the Air Defense Forces (Birobidzhan) - completely re-equipped on June 28, 2013 (12 launchers);

    1st missile brigade of the Southern Military District (Krasnodar) - the transfer of equipment took place on November 14, 2013 (12 launchers);

    112th Separate Guards Missile Brigade of the Western Military District (Shuya) - the transfer of equipment took place on July 8, 2014 (12 launchers);

    92nd separate missile brigade (Orenburg) of the Central Military District - the transfer of equipment took place on November 19, 2014 (12 launchers);

    103rd Separate Missile Brigade (Ulan-Ude) VVO - the transfer of equipment took place on July 17, 2015 (12 launchers);

By 2018, it is planned to re-equip all missile brigades on the Iskander OTRK.

Video

Kolomna KB. All my life "under the heading Secret." Fire arrows. Impact force.

Operational-tactical missile system "Iskander"(index - 9K720, according to NATO classification - SS-26 Stone "Stone") - is a family of operational-tactical missile systems: Iskander, Iskander-E, Iskander-K. The complex was developed in the Kolomna Design Bureau of Mechanical Engineering. The Iskander missile system was adopted by the Russian army in 2006; to date, 20 Iskander systems have been produced (according to open data from the Ministry of Defense).

The complex is designed to engage combat units in conventional equipment of small-sized and area targets in the depth of the operational formation of enemy troops. It is assumed that it can be a means of delivery of tactical nuclear weapons.

Most Likely Targets:

- means of fire damage (missile systems, multiple launch rocket systems, long-range artillery);

- means of anti-missile and air defense;

- airplanes and helicopters at airfields;

- command posts and communication centers;

— the most important objects of civil infrastructure.

The main features of the Iskander OTRK are:

- high-precision effective defeat various types goals;

- the possibility of covert combat duty, preparation for combat use and launching missile strikes;

- automatic calculation and input of the flight task for missiles when they are placed on the launcher;

- high probability of performing a combat mission in the face of active opposition from the enemy;

- high operational reliability of the rocket and its non-failure operation in preparation for launch and in flight;

- high tactical maneuverability due to the placement of combat vehicles on automobile all-wheel drive chassis of high cross-country ability;

- high strategic mobility, which is ensured by the possibility of transporting combat vehicles by all modes of transport, including aviation;

high degree process automation combat control missile divisions;

- fast processing and timely delivery of intelligence information to the necessary levels of command and control;

- long service life and ease of use.


Combat characteristics:

- circular probable deviation: 1 ... 30 m;
— launch weight of the rocket 3 800 kg;
- length 7.2 m;
— diameter 920 mm;
— weight of the warhead 480 kg;
- rocket speed after the initial part of the trajectory 2100 m / s;
- the minimum range of hitting a target is 50 km;
- the maximum range of hitting the target:
500 km Iskander-K
280 km Iskander-E
- time before the launch of the first rocket 4 ... 16 minutes;
- interval between launches: 1 minute
— service life: 10 years, including 3 years in the field.

The main elements that make up the Iskander OTRK are:

- rocket,
— self-propelled launcher,
- transport and loading machine,
- routine maintenance machine,
- command and control vehicle
- point of information preparation,
- a set of arsenal equipment,
- training aids.

Self-propelled launcher(SPU) - designed to store, transport, prepare and launch two missiles at a target (in export version 1 rocket). SPU can be implemented on the basis of a special wheeled chassis MZKT-7930 manufactured by the Minsk Wheel Tractor Plant. GVW 42 t, payload 19 t, highway/dirt road speed 70/40 km/h, fuel range 1000 km. Calculation 3 people.

Transport-loading vehicle(TZM) - designed to transport an additional two missiles. TZM is implemented on the MZKT-7930 chassis, equipped with a loading crane. Full combat weight 40 tons. Calculation of 2 people.

Command vehicle(KShM) - designed to control the entire Iskander complex. Implemented on the KamAZ-43101 wheeled chassis. Calculation 4 people. KShM CHARACTERISTICS:
- maximum radio communication range in the parking lot / on the march: 350/50 km
— task calculation time for missiles: up to 10 s
- command transmission time: up to 15 s
— number of communication channels: up to 16
- unfolding (clotting) time: up to 30 minutes
– continuous work time: 48 hours

Machine regulations and maintenance(MRTO) - designed to check the on-board equipment of missiles and instruments, for current repairs. Implemented on a KamAZ wheeled chassis. The mass is 13.5 tons, the deployment time does not exceed 20 minutes, the time of the automated routine check cycle of the on-board equipment of the rocket is 18 minutes, the calculation is 2 people.

Information preparation point(PPI) - designed to determine the coordinates of the target and prepare flight missions for missiles with their subsequent transfer to the SPU. PPI is integrated with reconnaissance means and can receive tasks and assigned targets from all necessary sources, including from a satellite, aircraft or drone. Calculation 2 people.

life support machine(MJO) - designed to accommodate, rest and eat combat crews. Implemented on a KamAZ-43118 wheeled chassis. The machine includes: a rest compartment and a household supply compartment. The rest compartment has 6 wagon-type beds with folding upper deck chairs, 2 lockers, built-in lockers, an opening window. The household supply compartment has 2 lockers with seats, a folding lifting table, a water supply system with a 300-liter tank, a tank for heating water, a pump for pumping water, a drain system, a sink, a dryer for clothes and shoes.

ROCKET complex "Iskander" is a solid-propellant, single-stage, with an inseparable warhead in flight, controlled and energetically maneuverable rocket throughout the flight path that is difficult to predict. It maneuvers especially actively on the starting and final stages of the flight, on which it approaches the target with a high (20-30 units) overload.
This necessitates the flight of an anti-missile to intercept the Iskander OTRK missile with an overload 2-3 times greater, which is currently almost impossible.

Most of the trajectory of the Iskander missile, made using stealth technology with a small reflective surface, passes at an altitude of 50 km, which also significantly reduces the likelihood of it being hit by the enemy. The effect of "invisibility" is provided by the combination design features missiles and surface treatment with special coatings.

To bring the missile to the target is used inertial control system, which is subsequently captured by an autonomous correlation-extreme optical homing head (GOS). The principle of operation of the missile homing system is based on the formation by the optical equipment of the GOS of the image of the terrain in the target area, which the on-board computer compares with the standard introduced into it when preparing the missile for launch.

Optical homing head is characterized by increased sensitivity and resistance to existing electronic warfare equipment, which allows missile launches on moonless nights without additional natural illumination and hit a moving target with an error of plus or minus two meters. At present, no other similar missile system in the world, except for the Iskander OTRK, can solve such a problem.

It is characteristic that the optical homing system used in the rocket does not need corrective signals from space radio navigation systems, which in a crisis situation can be disabled by radio interference or simply turned off. Complex use inertial control system with satellite navigation equipment and optical seeker made it possible to create a missile that hits a given target in almost any possible conditions. The homing head installed on the Iskander OTRK missile can be installed on ballistic and cruise missiles of various classes and types.

Types of combat units
- cassette with fragmentation submunitions of non-contact detonation (work at a height of about 10 m above the ground)
- cassette with cumulative fragmentation submunitions
- cassette with self-aiming submunitions
- cassette volumetric detonating action
- high-explosive fragmentation (OFBCH)
- high-explosive incendiary
- penetrating (PrBCh)
The cluster warhead contains 54 combat elements.

The Iskander complex is integrated with various intelligence and control systems. He is able to receive information about the target assigned to hit from a satellite, reconnaissance aircraft or unmanned aerial vehicle. aircraft(type "Reis-D") to the information preparation point (PPI). It calculates the flight task for the rocket and prepares the reference information for the rockets.

This information is transmitted via radio channels to the command and staff vehicles of the battalion commanders and batteries, and from there to the launchers. Commands to launch missiles can come from the KShM or from the command posts of senior artillery commanders.

Placing two missiles on each SPU and TZM significantly increases firepower missile battalions, and a one-minute interval between missile launches at different targets ensures high fire performance. In terms of its effectiveness, taking into account the total combat capabilities, operational-tactical the Iskander missile system is equivalent to a nuclear weapon.

/Alex Varlamik, based on materials from arms-expo.ru and wikipedia.org/

In world politics there is magic words, causing in awe the whole governments of the countries. For example, the phrase " chemical weapon in Syria" or " nuclear weapon Iran” causes a state of extreme military-diplomatic excitement among the political elite of the Western countries. However, in terms of the speed of the reaction of the progressive public to such phrases, our Iskander has no equal. The mention of the Iskander-M OTRK, especially in the context of its deployment at someone's borders, inevitably entails a reaction close to hysteria from the media, the military and politicians of the border countries and their Western overlords. Let's see what is the secret of our neighbors so frightening magical properties this operational-tactical missile system.

The problem of the Iskander missile system is that it is impossible to "catch" it. Firstly, because during the flight the missile maneuvers with huge overloads, which are still inaccessible for any interceptor missile in service with the countries of the world. Secondly, it flies very low - up to 6 km. from the surface at a speed of Mach 4, so it is almost impossible to detect using standard radar tools. Thirdly, it throws out decoys to deceive the enemy radar, sets up active radio interference and “jamming” all emitters that are used to navigate the missile defense system in space. Those. "Iskander" can destroy any object within a radius of 500 km with an accuracy of 2 meters and a probability close to 100%. Theoretically, by launching a rocket from Kaliningrad, you can "get" to the government quarter in Berlin, and the striking force of the strike can be easily increased by "hanging" a nuclear weapon on the rocket. warhead. Such missile weapons no one in the world has. At the same time, the Iskander is extremely mobile and secretive - the likelihood of its detection, even by means space intelligence, is very low. Within 1 minute, he launched a set of missiles and immediately left the place of deployment, turning off all devices.

The rocket is single-stage, has a single-nozzle engine, is non-ballistic and is controlled throughout the entire flight path using aerodynamic and gas-dynamic rudders. Most of the flight trajectory of a missile made using the Stealth technology and having a small dispersion surface passes at an altitude of 50 km, and on the approach section - 6-20 km (depending on the type of OTRK), which makes it an almost impossible task to defeat the enemy . The effect of "invisibility" is achieved due to a combination of design features, in particular, the treatment of the rocket with special nanostructured scattering coatings, the dropping of protruding parts after launch, etc. The trajectory of the Iskander is not only non-ballistic, but also difficult to predict. Immediately after the launch and immediately upon approaching the target, the rocket performs intensive maneuvering. Depending on the trajectory, overloads range from 20 to 30 units. Accordingly, the interceptor missile must withstand an overload at least 2-3 times higher, which is technologically impossible within the framework of the 4th technological order existing in the world and even the promising fifth.

Iskander-M - the main option for the Russian army - is significantly more complex than the exported Iskander-E. Less noticeable, more maneuverable at the start and at the end of the flight. In addition, it has not just an inertial guidance system, like Iskander-E, but a combined one, including radio correction, GPS, GLONASS, laser and optical homing in the final section. It is controlled by lattice rudders. The warhead is not separated in principle, because. the body serves to create lift in the final section.

In 2012, the final tests passed another complex - Iskander-K, which is further development M. It launches even more accurate, already cruise, missiles, which are equipped with small bearing surfaces, as on the R-37. Thanks to this, it became possible to fire along a flat trajectory, as, at one time, at the OKA complex, only much more accurately and faster. The missile can fly at an altitude of only 6 km (horizontal radars have no chance), it uses a combined seeker and interchangeable warheads. Two missiles in salvo can be completed different systems guidance and fire both on a hinged and flat trajectory.

Experts express the opinion that the combined use of the two brothers - Iskander-M and Iskander-K provide a synergistic effect, which is not able to counteract any of the existing missile defense systems. One of the rocket technology experts, who speaks on the forums under the nickname "Evil Critic", described the novelty as follows: "It is known that and ballistic missiles(BR), and cruise missiles (CR), as well as their guidance systems, have a number of restrictions on " current state"of the target being hit ... For example, if you bet ONLY on the Iskander-M, for example, with an optical-correlation system of final guidance on the target, and if you assume that you will have to hit the target at "X hour" with low clouds and intense visual opposition of the enemy, - the bet can be lost. Similarly, with the radar system of final guidance, similar in principle to that of the "Pershing-2", - here the "cards" can be confused by the enemy's intense REB. At the same time, low cloudiness, for example, and intense visual masking of the final object, will to a certain extent "on the drum" of the CR with an inertial and optical-correlation system that works out navigational corrections throughout the ENTIRE route (similar to Pendossk. CR ALCM) ... There is no target masking here will not help, - and here you need to ONLY shoot down, shoot down on the route or on the edge on the way to the target.

Finally, let's imagine a situation when Iskander-K and Iskander-M "approach" the target (the Czech missile defense radar or the gentry mines with GBI) - SIMULTANEOUSLY ... And each demonstrates "their own set of gadgets" , - "Iskander-M" - high-intensity maneuvering of a high-flying hypersonic target, "Iskander-K", - an extremely low flight profile (about 6 m) and following the terrain in a practically "autonomous" (i.e. not dependent on the search for a target on-board sensors) mode ... This is REALLY a situation close to 100% probability of hitting a target ... So, for the fight against EuroPRO, the COMBINATION "Iskander-M" + "Iskander-K" is really optimal. The whole point is to use these products at the same time, "in one blow"".

The German newspaper Bild, citing its sources, reported that Russia deployed Iskanders in the Kaliningrad region near the border with Lithuania, Latvia and Estonia. This message was followed by the reaction of the US authorities, who immediately, through all channels of interaction, called on Russia not to destabilize the situation by deploying Iskanders in the west. "We would not want them to take steps that lead to destabilization in the region," she said. official representative US State Department Marie Harf. Translated from diplomatic to human, it sounds something like this: “The deployment of Iskanders will upset the entire balance of power in Europe, and not in our direction. Anything but Iskander! Concern was also expressed in Poland and Latvia. Lithuanian Defense Minister Juozas Oleakas called it disturbing news, while Lithuanian presidential adviser Dalia Grybauskaite said that Russia's actions are not in line with declarations of a desire for closer cooperation with the European Union and NATO. Even China got nervous when it learned that the missile system would be located near its border.

It should be noted that the hands of Azerbaijan were tied with the supply of Iskanders to Armenia, recent times who tried to play with military muscles in the region - the aggressive rhetoric against Yerevan stopped. In 2014, Armenia will complete the re-equipment of its missile units with ultra-precise and long-range missile systems. Armenian Defense Minister Seyran Ohanyan stated this at a press conference in Yerevan on January 24, answering a question from journalists about whether reports about the acquisition of Russian modern operational-tactical missile systems (OTRK) Iskander-M by Yerevan are true. Note that the export Iskander-E, not cut in capabilities with a range of 280 km and one missile in the launcher, but a full-fledged M, firing at a distance of up to 500 km and having 2 missiles at once (by the way, so far the only OTRK in the world capable of launch 2 missiles at once from one launcher). For Armenian friends, apparently, they made an exception due to the heated geopolitical situation throughout the CIS.

"Iskander" can deliver to the target cluster (with 54 submunitions), penetrating, high-explosive fragmentation, as well as nuclear warheads. This allows you to hit small and area targets, including enemy fire weapons, air defense and missile defense systems, aviation at airfields, command posts, etc. The structure of the Republic of Kazakhstan includes a rocket, a self-propelled launcher, a transport-loading and command-and-control vehicles, a mobile information preparation point, mobile technical and household support units, as well as sets of arsenal and training equipment.

The history of the creation of this OTRK began in the early 80s. The use of warheads of conventional (non-nuclear) equipment while maintaining the effectiveness of weapons forced developers to look for new ways to build a missile control system (CS). The accuracy of the inertial control system for solving this problem is insufficient, it should have been raised

about an order of magnitude. In the 80s. attempts have already been made in our country to solve this problem. Optical homing equipment was created for the Scud (we even managed to conduct ground tests and put the missile into trial operation in the troops). A non-nuclear warhead guided by a correlation-type radar seeker was developed for the Volga complex. The modernized "Oka" and "Tochka" had not only an inertial control system, but also an optical correlation-extreme guidance system, which was also not only tested, but also underwent trial operation in the troops. During the idle years of our military-industrial complex, the United States achieved great success in this direction: on the American Pershing-2 missile, which was destroyed under the INF Treaty, a radar seeker was installed that identified the terrain in the target area; optical systems homing is used in modern versions cruise missiles "Tomahawk" and CALCM. Their effectiveness has been clearly demonstrated in Iraq and Yugoslavia.

The task of creating similar equipment for the Iskander was handled by the Central Research Institute of Automation and Hydraulics (TsNIIAG), a leading developer of guidance and control systems for domestic tactical and operational-tactical missiles, which has a 25-year backlog in the development of homing heads. As the main way to solve this problem, the combination of an inertial system with optical guidance along the surrounding terrain was chosen. Moreover, the homing head created at TsNIIAG can be used both as part of the Iskander and on ballistic and cruise missiles of various classes and types (including intercontinental ones). This seeker has already passed flight tests and showed better accuracy than the Americans achieved on their Tomahawks.

The principle of operation of homing systems, which have the scientific name of correlation-extreme, is that the optical equipment forms an image of the terrain in the target area, which is compared in the on-board computer with the reference one, after which corrective signals are issued to the missile controls.

The optical seeker is universal and makes only one requirement for the inertial control system of the rocket: bring the latter to the point where the optics begin to see the target. Against such a head, the existing active electronic warfare systems are powerless, which very effectively counteract radar homing systems. The high sensitivity of the seeker allows you to work even on a moonless night, which distinguishes the new system from existing analogues. In addition, optical systems do not need signals from space radio navigation systems, such as the American NAVSTAR, which in crisis cases can be turned off by its owners or disabled by radio interference. By the way, many potential customers of Iskander-E put forward demands for independence from satellite navigation. At the same time, the integration of inertial control with satellite navigation equipment and optical seeker makes it possible to create a missile that hits a given target in almost any conceivable conditions.

Information about the target is transmitted from a satellite, a reconnaissance aircraft or an unmanned aerial vehicle to an information preparation point (IPP). It calculates the flight mission for the missile, which is then broadcast via radio channels to the command and staff vehicles (CSV) of the battalion commanders and batteries, and from there to the launchers. Commands for launching missiles can be formed both in the KShM and come from the command posts of senior artillery commanders. The PPI and KShM equipment is built on local networks of Russian computers, and the functional purpose of the complex of control tools depends only on software and can be easily upgraded to handle a variety of weapons.

On October 11, 2011, the completion of the first stage of testing the updated Iskander-M missile system with new combat equipment was announced - with a new electronic warfare system that provides cover for the missile in the final flight segment. This system includes means of setting passive and active interference with surveillance and firing radars of the enemy's air and missile defense, through noise and the release of decoys. Since 2013, new missiles have been supplied to the Russian army.

The 2012 CIA analytical review “On Strategic Risks and the Global Military-Political Situation in the World” contains a very revealing definition: “The Iskander operational-tactical missile system is a weapon capable of influencing the military-political situation in the regions of the world, if located in Their states do not have an extended territory. Therefore, the issues of locating the Iskander complexes, as well as their export supplies, are the subject of political consultations between the countries.”

And, in addition, a few beautiful videos:

The Elusive Rocket Avenger

There are magic words in world politics that terrify entire governments of countries. For example, the phrase "chemical weapons in Syria" or "nuclear weapons in Iran" causes a state of extreme military-diplomatic excitement among the political elite of the countries. However, in terms of the speed of the reaction of the progressive public to such phrases, our "" has no equal. Mention of OTRK "Iskander-M", especially in the context of its placement at someone's borders, inevitably entails a reaction close to hysteria from the media, the military and politicians of the border countries and their Western overlords. Let's figure out what is the secret of the magical properties of this operational-tactical missile system that frighten our neighbors so much.

Missile complex problem "Iskander" thing is it is impossible to "catch". Firstly, because during the flight the missile maneuvers with huge overloads, which are still inaccessible for any interceptor missile in service with the countries of the world. Secondly, it flies very low - up to 6 m from the surface at a speed Mach 4, so it is almost impossible to detect using standard radar tools. Thirdly, it throws out decoys to deceive the enemy radar, sets up active radio interference and “jamming” all emitters that are used to navigate the missile defense system in space.

The principle of operation of homing systems, which have the scientific name of correlation-extreme, is that the optical equipment forms an image of the terrain in the target area, which is compared in the on-board computer with the reference one, after which corrective signals are issued to the missile controls.

Optical seeker universal and imposes only one requirement on the inertial control system of the rocket: bring the latter to the point at which the optics begin to see the target. The existing active means are powerless against such a head, which very effectively counteract radar homing systems. The high sensitivity of the seeker allows work even on a moonless night, which favorably distinguishes the new system from existing analogues. In addition, optical systems do not need signals from space radio navigation systems, such as the American NAVSTAR, which in crisis cases can be turned off by its owners or disabled by radio interference. By the way, many potential customers of Iskander-E put forward demands for independence from satellite navigation. At the same time, the integration of inertial control with satellite navigation equipment and optical seeker makes it possible to create a missile that hits a given target almost in every conceivable condition.

Information about the target is transmitted from a satellite, a reconnaissance aircraft, or to an information preparation point (IPP). It calculates the flight mission for the rocket, which is then broadcast via radio channels to the command and staff vehicles (CSV) of the battalion commanders and batteries, and from there to the launchers. Commands for launching missiles can be formed both in the KShM and come from the command posts of senior artillery commanders. PPI and KShM equipment is built on local networks Russian computers, and the functional purpose of the complex of controls depends only on and can be easily upgraded to control various fire weapons.

On October 11, 2011, the completion of the first stage of testing the updated missile system was announced. "Iskander-M" with new combat equipment - with a new electronic warfare system, which provides cover for the missile in the final phase of the flight. This system includes means of setting passive and active interference with surveillance and firing radars of the enemy's air and missile defense, through noise and the release of decoys. Since 2013, new missiles have been supplied to the Russian army.

More detailed and a variety of information about the events taking place in Russia, Ukraine and other countries of our beautiful planet, can be obtained on Internet conferences, constantly held on the website "Keys of Knowledge". All Conferences are open and completely free. We invite all interested. All Conferences are broadcast on the Internet Radio "Vozrozhdenie" ...

The index of the complex is 9K720, according to the classification of the US Defense Ministry and NATO - SS-26 Stone, eng. Stone

Family of operational-tactical missile systems (OTRK): Iskander, Iskander-E, Iskander-K, Iskander-M. The complex was created in the Kolomna Design Bureau of Mechanical Engineering (KBM). For the first time, the Iskander was shown publicly in August 1999 at the MAKS aerospace show.

Story

The development of the Iskander OTRK was started in accordance with the Decree of the Central Committee of the CPSU and the Council of Ministers of the USSR dated December 21, 1988 No. 1452-294 “on the start of development work on the creation of the Iskander OTRK”, as a result, including the personal efforts of the chief KBM designer S. P. Invincible, who proved to the Military-Industrial Commission of the Presidium of the Council of Ministers of the USSR the need to create a missile system instead of the Oka OTRK, which does not fall under the provisions of the treaty with the United States on the INF Treaty.

On October 11, 2011, the first stage of testing the updated Iskander-M missile system with new combat equipment was completed. The 9M723 missile of the Iskander-M complex is equipped with a new, correlation guidance system.

Ammunition

The Iskander complex includes two types of missiles: ballistic 9M723 and cruise missiles bearing the index 9M728.

The rocket of the 9M723 complex has one stage with a solid propellant engine.

The trajectory of movement is quasi-ballistic (not ballistic, maneuvering), the rocket is controlled throughout the flight using aerodynamic and gas-dynamic rudders. Made with the use of technologies for reducing radar visibility (the so-called "stealth technologies"): small scattering surface, special coatings, small size of protruding parts. Most of the flight takes place at an altitude of about 50 km. The rocket conducts intensive maneuvering with overloads of the order of 20-30 units in the initial and final sections of the flight. The guidance system is mixed: inertial in the initial and middle sections of the flight and optical (using the GOS developed by TsNIIAG) in the final section of the flight, which achieves a high hit accuracy of 5-7 m. It is possible to use GPS / GLONASS in addition to the inertial guidance system. There are several modifications of the rocket that differ in warhead and telemetry.

On September 20, 2014, during the Vostok-2014 command-and-staff exercises, the Iskander-M missile system was fired for the first time with a 9M728 type cruise missile. The launches were made by the 107th separate missile brigade (Birobidzhan). Developer and manufacturer - OKB "Novator". Chief designer - P.I. Kamenev. Rocket tests took place from 05/30/2007. Firing range: maximum - up to 500 km.

Since 2013, it is planned to supply missiles equipped with an electronic warfare system to the Russian Armed Forces, which provides cover for the missile in the final flight segment. This system includes means of setting passive and active interference with surveillance and firing radars of the enemy's air and missile defense, using noise and the release of decoys.

Options

Option for the Russian armed forces, 2 missiles on launchers, the firing range in various sources varies from the declared for Iskander-E - 280 km - up to 500 km (it is not indicated with what type of warhead (warhead mass) the corresponding range is achieved). The flight altitude is 6-50 km, most of them usually pass at maximum altitude. Controllable throughout the flight. The flight path is not ballistic, difficult to predict. The missile is made using the technology of low radar visibility and also has a radar absorbing coating and is a relatively small target in its natural physical size. Predicting a target in an early interception attempt is further complicated by heavy maneuvering during takeoff and descent to the target. When descending to the target, the missile maneuvers with an overload of 20-30 units, descending at a speed of 700-800 m / s (these figures exceed or are on the verge of the capabilities of the best medium-range missile defense / air defense systems), at an angle of about 90 degrees (in some cases only the angle of attack is sufficient for the complete defenselessness of the attacked missile defense system, and even more so for air defense, especially short-range ones), so Iskander-M has a number of advantages over analogues, and high capabilities not only for hitting a target, but even for protection means in the form of modern missile defense systems.

The missile carries a complex set of passive and active interference; when approaching the target, false targets and jammers are additionally fired. Sample M is additionally equipped with an electronic warfare system to disrupt the operation of the enemy radar. All this also provides the missile with high combat effectiveness in comparison with simpler similar missiles.

Maneuvering at high altitude is provided by speed and aerodynamic rudders. Such maneuvering is not intensive, but imposes ultra-high demands on the reaction time for the interceptor (in a hundredth of a second, the missiles approach by tens of meters, the reaction time of one of the fastest missile defense systems is more than 5 seconds, as well as air defense systems from open sources). If the interceptor is kinetic, this also requires successful trajectory prediction with high accuracy. In order to successfully intercept a ballistic target with a high probability, previously created before the non-ballistic Iskander complexes, it was early enough to detect a target of the appropriate size and speed, and, having predicted the trajectory, ensure interception. However, Iskander changes his trajectory. The Oka complex, the predecessor of Iskander, could change the target while maintaining a stable trajectory before and after the maneuver, thereby moving away from the interceptor, or at least reduced the effective protection zone, requiring time to recalculate the meeting point.

Export version, firing range 280 km, warhead weight 480 kg. It is a simplified version of the Iskander-M. Rocket maneuvering at high altitude is provided by aerodynamic rudders and a flight speed of 2100 meters per second throughout the high-altitude flight. Satisfies the conditions of the missile technology control regime.

Variant using cruise missiles, firing range 500 km, warhead weight 480 kg. The flight altitude of the rocket is about 7 meters when reaching the target, and not higher than 6 km, the rocket is automatically corrected all the time of the flight and automatically goes around the terrain. For the Iskander-K OTRK, R-500 cruise missiles with a range of 2000 km are also being assembled.

Combat use

There is no reliable information about the combat use of the Iskander complexes, however, there were reports refuted by the Russian military that the complex was used during the Georgian-South Ossetian armed conflict in 2008.

According to Shota Utiashvili, head of the Analytical Department of the Ministry of Internal Affairs of Georgia, Russia used Iskander missile systems at facilities in Poti, Gori and the Baku-Supsa pipeline.

In blogs, Utiashvili's statement was widely discussed and was perceived ambiguously, since some of the photographs of several march stages presented as evidence do not refer to the Iskander, but to the 9M79 missiles of the Tochka-U complexes, while the other part of the photographs really shows fragments with applied code 9M723, corresponding to the designation of the missiles of the Iskander complex.

Mikhail Barabanov, an expert in the Moscow Defense Brief, points out that the Iskander complex was used at the base of a separate tank battalion in Gori. As a result of a direct hit of the warhead in the weapons depot of the Georgian battalion, it was blown up. The author notes that this information is based on unverified sources. A Dutch commission investigating the death of RTL Nieuws cameraman Stan Storimans in Gori on August 12, 2008 determined that the journalist had been killed by a single 5mm steel ball. According to the BBC, the Dutch commission expressed an expert opinion that the Iskander was the carrier of the cluster munition, but the report did not indicate on what grounds such a conclusion was made. The Russian Foreign Ministry said that the data provided by the Dutch side is not enough to determine the type of carrier. Earlier, Human Rights Watch put forward another version, according to which the cause of the death of the Dutch journalist was RBC-250 aviation cluster bombs.

Colonel General Anatoly Nogovitsyn, Deputy Chief of the General Staff of the RF Armed Forces, denied all reports of the use of Iskanders in Georgia, saying that the Iskander complex was not used during the hostilities in South Ossetia.

A little about politics

The Iskander operational-tactical missile system is a weapon that can affect the military-political situation in some regions of the world if the states located in them do not have an extended territory. Therefore, the issues of the location of the Iskander complexes, as well as their export supplies, are the subject of political consultations between the countries.

On November 5, 2008, Russian President Dmitry Medvedev, addressing the Federal Assembly, said that the response to the American missile defense system in Poland would be the deployment of Iskander missile systems in the Kaliningrad region. But after the US refused to deploy a missile defense system in Eastern Europe, Medvedev said that in response, Russia would not deploy this complex in the Kaliningrad region. Due to the escalation of tension between Russia and the United States, at the end of 2011, the issue of deploying the Iskander OTRK in the Kaliningrad region remained open. On November 23, 2011, Russian President Dmitry Medvedev again announced that the Russian Federation was ready to deploy the Iskander complex if NATO countries continue to deploy a missile defense system in Europe.

On January 25, 2012, it became known that the first division of the Iskander tactical missile systems in the Kaliningrad region would be deployed and put on combat duty by Russia in the second half of 2012. However, on the same day, the Ministry of Defense of the Russian Federation denied this information, stating that no decision had been made at the General Staff on approving the staff of the military unit of the Baltic Fleet, armed with Iskander missile systems. On December 15, 2013, the German media, citing sources in the security structures, reported that Russia had deployed Iskander missile systems in the Kaliningrad region. This is evidenced by satellite images showing at least ten Iskander-M complexes deployed in Kaliningrad, as well as along the border with the Baltic countries. The deployment may have taken place during 2013.

The complexes were transferred to the Kaliningrad region during military exercises and a sudden check of the combat readiness of the Western Military District and the Northern Fleet in December 2014 and March 2015.

In 2005, it became known about plans to supply Iskander complexes to Syria. This caused a sharp negative reaction from Israel and the United States. During a visit to Israel, Russian President Vladimir Putin announced a ban on such supplies to prevent upsetting the balance of power in the region. In August 2008, during a visit to Moscow, Syrian President Bashar al-Assad expressed his readiness to deploy complexes in Syria.

On February 15, 2010, the President of the unrecognized Transnistria, Igor Smirnov, spoke in favor of deploying Iskanders in the republic in response to plans to deploy US missile defense systems in Romania and Bulgaria.

In service

Russia (as of February 2016): 6 brigades (72 SPU)

26th missile brigade of the Western Military District (Luga) - the re-equipment of the brigade began in 2010 with the delivery of 6 complexes (PU), in 2011 the formation of the first brigade (12 launchers) was completed;
-107th missile brigade of the Air Defense Forces (Birobidzhan) - completely re-equipped on June 28, 2013 (12 launchers);
-1st missile brigade of the Southern Military District (Krasnodar) - the transfer of equipment took place on November 14, 2013 (12 launchers);
-112th separate guards missile brigade of the Western Military District (Shuya) - the transfer of equipment took place on July 8, 2014 (12 launchers);

92nd separate missile brigade (Orenburg) of the Central Military District - the transfer of equipment took place on November 19, 2014 (12 launchers);
-103rd separate missile brigade (Ulan-Ude) VVO - the transfer of equipment took place on July 17, 2015 (12 launchers);
By 2018, it is planned to re-equip all missile brigades on the Iskander OTRK

Main characteristics

Purpose of the complex

Designed to engage combat units in conventional equipment of small and area targets in the depth of the operational formation of enemy troops. It is assumed that it can be a means of delivery of tactical nuclear weapons.

Most likely targets:

Means of fire damage (missile systems, multiple launch rocket systems, long-range artillery)
- means of anti-missile and air defense
-airplanes and helicopters at airfields
- command posts and communication centers
- the most important objects of civil infrastructure

The composition of the complex

The complex includes six types of vehicles (51 units per missile brigade):

-Self-propelled launcher (SPU) (9P78-1)

12 pcs. - designed for storage, transportation, preparation and launch of two missiles at the target. Iskander can be made on the basis of a special wheeled chassis manufactured by the Minsk Wheel Tractor Plant (MZKT-7930). GVW 42 t, payload 19 t, highway/dirt road speed 70/40 km/h, fuel range 1000 km. Calculation 3 people.

- Transport-loading vehicle (TZM) (9T250 (9T250E))

12 pcs. - designed to transport an additional two missiles. Made on the MZKT-7930 chassis, equipped with a loading crane. Full combat weight 40 tons. Calculation of 2 people.

- Command and staff vehicle (KShM) (9S552)

11 pcs. - designed to control the entire Iskander complex. Assembled on a KAMAZ 43101 wheeled chassis. R-168-100KAE "Aqueduct" radio station. Calculation 4 people. Characteristics of KShM:
-maximum range of radio communication in the parking lot / on the march: 350/50 km
- task calculation time for missiles: up to 10 s
- command transmission time: up to 15 s
- number of communication channels: up to 16
- Deployment (clotting) time: up to 30 minutes
- continuous work time: 48 hours

-Machine regulations and maintenance (MRTO)

Designed to check the on-board equipment of missiles and instruments, to carry out current repairs. Made on a KamAZ wheeled chassis. The mass is 13.5 tons, the deployment time does not exceed 20 minutes, the time of the automated routine check cycle of the on-board equipment of the rocket is 18 minutes, the calculation is 2 people.

- Information preparation point (PPI) (9S920, KAMAZ 43101)

Designed to determine the coordinates of the target and prepare flight missions for missiles with their subsequent transfer to the SPU. PPI is interfaced with reconnaissance means and can receive tasks and assigned targets from all necessary sources, including from a satellite, aircraft or UAV. Calculation 2 people.

- Life support machine (LJO)

14 pcs. - designed to accommodate, rest and eat combat crews. Made on a wheeled chassis KAMAZ 43118. The machine includes: a rest compartment and a household supply compartment. The rest compartment has 6 wagon-type beds with folding upper deck chairs, 2 lockers, built-in lockers, an opening window. The household supply compartment has 2 lockers with seats, a folding lifting table, a water supply system with a 300-liter tank, a tank for heating water, a pump for pumping water, a drain system, a sink, a dryer for clothes and shoes.

-A set of arsenal equipment and training aids

Combat characteristics

Circular error probable: 10-30 m (depending on the guidance system used); 5-7 m ("Iskander-M" using a missile with a correlation seeker)
- Launch weight of the rocket: 3 800 kg
-Warhead weight: 480 kg
- Length: 7.2m
- Diameter: 920mm
-Rocket speed after the initial part of the trajectory: 2,100 m/s. Maximum overloads during the flight - 20-30G (the rocket maneuvers in flight both in height and in the direction of flight). The maximum height of the trajectory is 50 km.

Minimum target engagement range: 50 km
-Maximum target range:
-500 km Iskander-K (2000 km with R-500 cruise missile)
-280 km Iskander-E (export)
- Guidance: INS, GLONASS, Optical seeker
-Time to launch the first rocket: 4-16 minutes
- Interval between launches: 1 minute (for 9P78 launcher with two missiles)
-Temperature operating range: ?50 deg.C to 50 deg.C
- Service life: 10 years, including 3 years in the field

Head types

In normal gear:
- cassette with 54 fragmentation submunitions of non-contact detonation (work at a height of about 10 m above the ground)
- cassette with cumulative fragmentation submunitions
- cassette with self-aiming submunitions
- cassette volumetric detonating action
- high-explosive fragmentation (OFBCH)
- high-explosive incendiary
- penetrating (PrBCh)
-special (nuclear)